Направления использования генеративного искусственного интеллекта при начальном обучении программированию в университетах
Аннотация
В данной работе приводится обзор литературы по использованию генеративного искусственного интеллекта (ГенИИ) при начальном обучении программированию в вузах.
Приведены основные направления применения генеративного искусственного интеллекта: специализированные узкотемные разработки, встраивание в он-лайн платформы обучения и проверки решений, работа студентов с ГенИИ без ограничений, направляющие системы взаимодействия студентов с ГенИИ (без предоставления решений), помощь преподавателю, инструменты для разработки интеллектуальных обучающих систем.
Также содержится обзор работ, анализирующих достигнутые результаты и нерешённые проблемы.
Литература
Muhamad Kaleem, Muhamad Awais Hassan, and Syed Khaldoon Khurshid (2024). A Machine Learning-Based Adaptive Feedback System to Enhance Programming Skill Using Computational Thinking. IEEE Access https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10506466
Sun Zhang, Jianhao Yang, Xiaoshuang Sang (2023). Exploring the Applications of EduCoder Platform in Blended Teaching for Computer Major // Journal of Education and Educational Research, Vol. 4, No. 2, p.100 https://drpress.org/ojs/index.php/jeer/article/view/10819/10528
Zihao Li, Sun Zhang, Xiaoshuang Sang (2023). Exploration of Machine Learning Teaching based on the EduCoder Platform. Journal of Education and Educational Research, Vol. 4, No. 3, p.130 https://drpress.org/ojs/index.php/jeer/article/download/11387/11088
Figueiredo and F. J. García-Peñalvo (2021). Teaching and Learning Tools for Introductory Programming in University Courses," in Proceedings of the 2021 International Symposium on Computers in Education (SIIE) (23-24 September 2021, Málaga, Spain), A. Balderas, A. J. Mendes and J. M. Dodero, Eds., USA: IEEE, https://doi.org/10.1109/SIIE53363.2021.9583623
V. Phan, E. Hicks (2018). Code4brownies: an active learning solution for teaching programming and problem solving in the classroom. Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, pp. 153-158 https://dl.acm.org/doi/10.1145/3197091.3197128
Olaf Herden (2024). Integration of Chatbots for Generating Code Into Introductory Programming Courses International Conference “Future of education”. https://conference.pixel-online.net/files/foe/ed0014/FP/9091-ICT6673-FP-FOE14.pdf
Christian Köppe, Hieke Keuning, Ioanna Lykourentzou ,Isaac Alpizar Chacon, Sergey Sosnovsky (2024). Practices for the Application of Generative AI in Programming Education. Research project. https://www.uu.nl/sites/default/files/GenAI%20in%20ProgEd%20practices.pdf
Qiao Jin, Yifan Yang, Qingyu Chen, Zhiyong Lu (2023). GeneGPT: Augmenting Large Language Models with Domain Tools for Improved Access to Biomedical Information https://arxiv.org/pdf/2304.09667v3
Lau, S., & Guo, P. (2023). From “Ban It Till We Understand It” to “Resistance is Futile”: How University Programming Instructors Plan to Adapt as More Students Use AI Code Generation and Explanation Tools such as ChatGPT and GitHub Copilot. Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 1, 106–121. https://doi.org/10.1145/3568813.3600138
Juan Carlos Farah, Basile Spaenlehauer, Sandy Ingram, Aditya K.Purohit, Adrian Holzer, and Denis Gillet (2023). Harnessing Rule-Based Chatbots to Support Teaching Python Programming Best Practices https://infoscience.epfl.ch/record/303628/files/farah2023harnessing_postprint_v3.pdf
Cambaz, D. (2023). Use of AI-driven code generation models in teaching and learning programming: a systematic literature review. Bachelor thesis, TU Delft Electrical Engineering, Mathematics and Computer Science https://repository.tudelft.nl/islandora/object/uuid:4071531b-2dd0-4001-b67c-6351761d4821
Mónica De La Roca, Miguel M. Chan, Antonio Garcia‐Cabot, Eva Garcia‐Lopez, Héctor Amado‐Salvatierra (2023). The impact of a chatbot working as an assistant in a course for supporting student learning and engagement https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22750
Sofia Bobadilla, Richard Glassey, Alexandre Bergel, Martin Monperrus (2023). SOBO: A Feedback Bot to Nudge Code Quality in Programming Courses https://arxiv.org/pdf/2303.07187
Sengewald, Julian; Wilz, Mathis; and Lackes, Richard (2024). AI-Assisted Learning Feedback: Should Gen-AI Feedback Be Restricted to Improve Learning Success? A Pilot Study in a SQL Lecture. ECIS 2024 Proceedings. 12. https://aisel.aisnet.org/ecis2024/track13_learning_teach/track13_learning_teach/12
Kritish Pahi, Shiplu Hawlader, Eric Hicks, Alina Zaman, Vinhthuy Phan (2024). Enhancing active learning through collaboration between human teachers and generative AI. Computers and Education Open, Volume 6, 100-183, https://doi.org/10.1016/j.caeo.2024.100183
D. Roldán-Álvarez and F. J. Mesa (2024). Intelligent Deep-Learning Tutoring System to Assist Instructors in Programming Courses. IEEE Transactions on Education, vol. 67, no. 1, pp. 153-161, https://doi.org/10.1109/TE.2023.3331055
C. Martinez-Araneda, M. Gutiérrez, D. Maldonado, P. Gómez, A. Segura, C. Vidal-Castro (2024) Designing a Chabot to support problem-solving in a programming course. INTED2024 Proceedings, pp. 966-975. https://library.iated.org/view/MARTINEZARANEDA2024DES
C. Martínez-Araneda, M. Gutiérrez Valenzuela, P. Gómez Meneses, D. Maldonado Montiel, A. Segura Navarrete and C. Vidal-Castro (2023). How Useful TutorBot+ is for Teaching and Learning in Programming Courses: a Preliminary Study, 42nd IEEE International Conference of the Chilean Computer Science Society (SCCC), Concepcion, Chile, 2023, pp. 1-7 https://ieeexplore.ieee.org/abstract/document/10315697
Kimio Kuramitsu, Yui Obara, Miyu Sato, and Momoka Obara. (2023). KOGI: A Seamless Integration of ChatGPT into Jupyter Environments for Programming Education. In Proceedings of the 2023 ACM SIGPLAN International Symposium on SPLASH-E (SPLASH-E 2023). Association for Computing Machinery, New York, NY, USA, 50–59. https://doi.org/10.1145/3622780.3623648
Jian Liao, Linrong Zhong, Longting Zhe, Handan Xu, Ming Liu, and Tao Xie (2024). Scaffolding Computational Thinking With ChatGPT. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 17, 2024 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10508087
Sarshartehrani, F., Mohammadrezaei, E., Behravan, M., Gracanin, D. (2024). Enhancing E-Learning Experience Through Embodied AI Tutors in Immersive Virtual Environments: A Multifaceted Approach for Personalized Educational Adaptation. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. HCII 2024. Lecture Notes in Computer Science, vol 14727. Springer, Cham.
https://doi.org/10.1007/978-3-031-60609-0_20
Mohammad Abolnejadian, Sharareh Alipour, and Kamyar Taeb (2024). Leveraging ChatGPT for Adaptive Learning through Personalized Prompt-based Instruction: A CS1 Education Case Study. In Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA '24). Association for Computing Machinery, New York, NY, USA, Article 521, 1–8. https://doi.org/10.1145/3613905.3637148
Boxuan Ma, Chen Li, Konomi Shin’ichi (2024). Enhancing programming education with ChatGPT: a case study on student perceptions and interactions in a Python course https://arxiv.org/pdf/2403.15472v3
Menon, Pratibha (2023). Exploring GitHub Copilot assistance for working with classes in a programming course. Issues in Information Systems, 2023, Vol 24, Issue 4, p66 https://doi.org/10.48009/4_iis_2023_106
Arto Hellas, Juho Leinonen, Leo Leppänen (2024). Experiences from Integrating Large Language Model Chatbots into the Classroom https://arxiv.org/pdf/2406.04817
Mark Liffiton, Brad Sheese, Jaromir Savelka, Paul Denny (2023). CodeHelp: Using Large Language Models with Guardrails for Scalable Support in Programming Classes https://arxiv.org/pdf/2308.06921
Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, Andrew Luxton-Reilly (2024). Desirable Characteristics for AI Teaching Assistants in Programming Education https://arxiv.org/pdf/2405.14178v1
Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Z. Henley, Paul Denny, Michelle Craig, Tovi Grossman (2024). CodeAid: Evaluating a Classroom Deployment of an LLM-based Programming Assistant that Balances Student and Educator Needs https://arxiv.org/pdf/2401.11314
Samuel D George and Prasun Dewan (2024). NotebookGPT – Facilitating and Monitoring Explicit Lightweight Student GPT Help Requests During Programming Exercises. In Companion Proceedings of the 29th International Conference on Intelligent User Interfaces (IUI '24 Companion). Association for Computing Machinery, New York, NY, USA, 62–65. https://doi.org/10.1145/3640544.3645234
Changyoon Lee, Junho Myung, Jieun Han, Jiho Jin, Alice Oh Learning from Teaching Assistants to Program with Subgoals: Exploring the Potential for AI Teaching Assistants https://arxiv.org/pdf/2309.10419
Lianne Roest, Hieke Keuning, and Johan Jeuring. (2024). Next-Step Hint Generation for Introductory Programming Using Large Language Models. In Proceedings of the 26th Australasian Computing Education Conference (ACE '24). Association for Computing Machinery, New York, NY, USA, 144–153. https://doi.org/10.1145/3636243.3636259
Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, Juho Kim (2023). Teach AI How to Code: Using Large Language Models as Teachable Agents for Programming Education https://arxiv.org/pdf/2309.14534
Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, Juho Kim (2023). Teach AI How to Code: Using Large Language Models as Teachable Agents for Programming Education https://arxiv.org/pdf/2309.14534v2
Fazel Keshtkar, Neelesh Rastogi, Sebastian Chalarca, and Syed Ahmad Chan Bukhari (2024). AI Tutor: Student’s Perceptions and Expectations of AI-Driven Tutoring Systems: A Survey-Based Investigation, Vol. 37 : Proceedings of FLAIRS-37 https://journals.flvc.org/FLAIRS/article/download/135314/139973
Kohlhase, M., Berges, M., Grubert, J. et al. (2024). Project VoLL-KI: Learning from Learners Künstl Intell https://link.springer.com/article/10.1007/s13218-024-00846-9
Glen Smith, Adit Gupta, Chris MacLellan (2024). Apprentice Tutor Builder: A Platform For Users to Create and Personalize Intelligent Tutors https://arxiv.org/pdf/2404.07883
Xiaohang Tang, Sam Wong, Kevin Pu, Xi Chen, Yalong Yang, Yan Chen (2024). VizGroup: An AI-Assisted Event-Driven System for Real-Time Collaborative Programming Learning Analytics https://arxiv.org/pdf/2404.08743v1
Estévez-Ayres, I., Callejo, P., Hombrados-Herrera, M.Á. et al. (2024). Evaluation of LLM Tools for Feedback Generation in a Course on Concurrent Programming. Int J Artif Intell Educ. https://doi.org/10.1007/s40593-024-00406-0
Shanto, S.S., Ahmed, Z. and Jony, A.I. (2023). PAIGE: A generative AI-based framework for promoting assignment integrity in higher education. STEM education, 2023, 3(4): 288–305. https://doi.org/10.3934/steme.2023018
Silva, Rodrigo. (2024). Using ChatGPT as a Virtual Tutor for Teaching Algorithms https://www.researchgate.net/publication/380244926
K. G. D. K. Perera, J. Wijayanayake and J. Prasadika (2024). Factors Affecting the Effectiveness of Generative Artificial Intelligence Apps on University Students' Programming Language Learning in Sri Lanka: A Systematic Literature Review, 4th International Conference on Advanced Research in Computing (ICARC), Belihuloya, Sri Lanka, pp. 276-281 https://ieeexplore.ieee.org/abstract/document/10499744
Sa Liu, Brian Grey, Ryan Watkins (2024). Assessing Risks, Challenges and Opportunities of Generative AI in Computer Programming Education --- Lightning Talk Journal of Computing Sciences in Colleges, Volume 39 Issue 8 pp 210–211 https://dl.acm.org/doi/abs/10.5555/3665609.3665633
Lin, C.-C., Huang, A.Y.Q., Lu, O.H.T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learn. Environ. 10(1), 41 https://link.springer.com/article/10.1186/s40561-023-00260-y
Thi Minh Thuy Le (2024). Utilizing AI Tools in Learning Introductory Programming: An Analysis of Tampere University Students’ Strategies and Outcomes. Bachelor’s Thesis. Tampere University Science and Engineering https://trepo.tuni.fi/bitstream/handle/10024/156661/LeThiMinhThuy.pdf?sequence=2
Andreas Scholl, Daniel Schiffner, and Natalie Kiesler (2024). Analyzing Chat Protocols of Novice Programmers Solving Introductory Programming Tasks with ChatGPT https://arxiv.org/pdf/2405.19132
Jochen L. Leidner and Michael Reiche (2024). Language-Model Assisted Learning How to Program? https://sme.uni-bamberg.de/ai4ai/p3.pdf
Céline Hocquettea,Johannes Langerb, Andrew Croppera and Ute Schmidb (2024). Can Humans Teach Machines to Code? https://arxiv.org/pdf/2404.19397
Jacques, L. (2023). Teaching CS-101 at the Dawn of ChatGPT. ACM Inroads 14, 2, 40–46. https://doi.org/10.1145/3595634
Материал публикуется под лицензией: