Определение состояния аварийного корабля в процессе развития затопления отсеков

  • Даниил Дмитриевич Гончарук Санкт-Петербургский государственный университет, Университетский пр., д. 28, Старый Петергоф, 198504, Санкт-Петербург, Россия http://orcid.org/0000-0003-1571-3583
  • Александр Борисович Дегтярев Санкт-Петербургский государственный университет, Университетский пр., д. 28, Старый Петергоф, 198504, Санкт-Петербург, Россия http://orcid.org/0000-0003-0967-2949
  • Илья Владимирович Бусько Санкт-Петербургский государственный университет, Университетский пр., д. 35, Старый Петергоф, 198504, Санкт-Петербург, Россия
Ключевые слова: искусственная нейронная сеть, бортовая система искусственного интеллекта, бортовая качка корабля

Аннотация

В статье рассматривается метод потоковой обработки реализации бортовой качки корабля в процессе развития аварии в результате затопления отсеков с целью определения момента времени, когда происходит смена типа диаграммы статической остойчивости. Состояние корабля, соответствующее каждому из этих типов, требует абсолютно разных методов борьбы за живучесть, что отражается в базе знаний бортовой интеллектуальной системы. В условиях плавания, а тем более в экстремальных ситуациях, непосредственное измерение характеристик остойчивости морского объекта невозможно, поэтому требуется их косвенное определение. В статье приведена реализация процедурной компоненты бортовой интеллектуальной системы мониторинга безопасности мореплавания, основанной на искусственной нейронной сети.

Биографии авторов

Даниил Дмитриевич Гончарук, Санкт-Петербургский государственный университет, Университетский пр., д. 28, Старый Петергоф, 198504, Санкт-Петербург, Россия

Студент 1 курса магистратуры факультета Прикладной математики – Процессов управления, СПбГУ, st080521@student.spbu.ru

Александр Борисович Дегтярев, Санкт-Петербургский государственный университет, Университетский пр., д. 28, Старый Петергоф, 198504, Санкт-Петербург, Россия

Доктор техн. наук, доцент, профессор кафедры Компьютерного моделирования и многопроцессорных систем, СПбГУ, a.degtyarev@spbu.ru

Илья Владимирович Бусько, Санкт-Петербургский государственный университет, Университетский пр., д. 35, Старый Петергоф, 198504, Санкт-Петербург, Россия

Кандидат техн. наук,  инженер-исследователь кафедры Компьютерного моделирования и многопроцессорных систем, СПбГУ, i.busko@spbu.ru

Литература

Справочник по теории корабля / Дробленков, Ермолаев, Муру, Крылов, Кузнецов, под ред. Дробленкова В. Ф. М.: Воениздат, 1984. 589 с.

Nechaev Y., Degtyarev A. Account of peculiarities of ship's non-linear dynamics in seaworthiness estimation in real-time intelligence systems // Proceedings of the International conference STAB'2000 — Launceston, Tasmania, Australia, — 2000. — Vol. 2, — P. 688-701.

Nechaev Y., Degtyarev A., Boukhanovsky A. Complex Situations Simulation when Testing Intelligence System Knowledge Base // Lecture Notes in Computer Science, 2001. — Vol. 2073, — P. 453-462

Nechaev Y., Degtyarev A., Kiryukhin I. Complex Situation Recognition on the Basis of Neural Networks in Shipboard Intelligence System // Lecture Notes in Computer Science, 2002. — Vol. 2331, — P. 564-573.

NechaevYu.I., Degtyarev A.B., Boukhanovsky A.V. Cognitive Computer Graphics for Information Interpretation in Real Time Intelligence Systems // Lecture Notes in Computer Science, 2002. — Vol. 2329, — P. 683-692

Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.: Питер, 2018. 480 с.

Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. Слинкина А. А. – 2 изд., испр. – М.: ДМК Пресс, 2018. 652 с.

Grabusts P., Zorins A. The Influence of Hidden Neurons Factor on Neural Network Training Quality Assurance // Proceedings of the 10th International Scientific and Practical Conference, 2015, vol. 3, pp. 76-81.

Degtyarev A. New Approach to Wave Weather Scenarios Modeling. //Fluid Mechanics and its Applications, v.97, 2011, pp.599-617

Давидан И.Н., Лопатухин Л.И., Рожков В.А. Ветровое волнение как вероятностный гидродинамический процесс. Л.:Гидрометеоиздат, 1978

Опубликован
2023-12-29
Как цитировать
Гончарук, Д. Д., Дегтярев, А. Б., & Бусько, И. В. (2023). Определение состояния аварийного корабля в процессе развития затопления отсеков. Компьютерные инструменты в образовании, (4), 41-49. https://doi.org/10.32603/2071-2340-2023-4-41-49
Выпуск
Раздел
Искусственный интеллект и машинное обучение