Анализ изменений в основных содержательных линиях при построении альтернативного курса математики, основанного на цифровых ресурсах.
Аннотация
В статье анализируются изменения в преподавании математики в школе, связанные с развитием цифровой образовательной среды. Теоретический анализ сопровож- дается обсуждением базовых примеров изменений по основным содержательным линиям курса, таким, как алгебраическая линия, теоретико-функциональная линия, линия уравнений и неравенств, геометрическая линия, стохастическая линия, линия дискретной математики и теоретической информатики. В процессе конструктивного анализа рассматриваются такие виды изменений, как: перенос акцента с операцион- ной деятельности на моделирование, что связывается с развитием “вычислительно- алгоритмического мышления” (computational thinking); использование цифровых репрезентаций математических понятий для формирования мысленных образов математических понятий и повышения внимания к оперированию мысленными образами; изучение материала на различных уровнях сложности посредством ис- пользования компьютерных моделей; изучение алгоритмов, которые используются в системах компьютерной математики; развитие горизонтальных связей как в методи- ческом аспекте через повышение роли интегративных сюжетов, соединяющих в себе различные разделы математики и информатики, так и в аспекте общей педагогики через конструирование общих информационных пространств для взаимодействия образовательных сообществ и расширения их участников.
Литература
A. Chukhnov and S. Pozdnyakov, “Pedagogical and Methodological Aspects of Non-Invasive Monitoring (case of Teaching Mathematics at School and University),” Computer Tools in Education, no. 4, pp. 113–145, 2020 (in Russian); doi:10.32603/2071-2340-2020-4-113-145
J. Dieudonne,ˊ Linear algebra and geometry, Moscow: Nauka, 1972 (in Russian).
S. N. Pozdnyakov, “The Relationship of Goal-Setting in the Teaching of Mathematics with its Technological Support,” Computer tools in education, no. 3, pp. 70–89, 2019 (in Russian);
doi:10.32603/2071-2340-2019-3-70-89
S. G. Ivanov and S. G. Pozdnyakov, “Computer in productive teaching of mathematics,” Computer Tools in Education, no. 5, pp. 10–20, 2003 (in Russian).
McGraw-Hill Education, “Sketch Exchange — The Geometer’s Sketchpad Resource Center,” in www.dynamicgeometry.com, 2014. [Online]. Available: https://www.dynamicgeometry.com/General_ Resources/Sketch_Exchange.html
The Material Exchange, “The leading marketplace for educators. Sell, buy, or exchange free teaching/learning resources,” in thematerialexchange.com, 2023. [Online]. Available:
https://thematerialexchange.com/
S. G. Ivanov, “Application of self-learning in the teaching process to improve the quality of education,” in Proc. of XXIX Int. Scientific and Methodological Conf. "Modern Education: Content, Technology, Quality"19 apr. 2023, ETU LETI, St. Petersburg, Russia, pp. 529–531, 2023 (in Russian).
M. I. Bashmakov, “Math learning needs deep math ideas,” Computer Tools in Education, no. 6, pp. 19–24, 2000 (in Russian).
P. I. Laina, The efficiency of teaching mathematics at school, Diss. сandidate of pedagogical sciences, Leningrad, USSR, 1991 (in Russian).
M. I. Bashmakov, “Level and profile of mathematical education,” Mathematics in School, no. 2, pp. 8–9, 1993 (in Russian).
V. I. Ryzhik, “Computer: time for change,” Mathematics in School, no. 1, pp. 52–60, 2023 (in Russian); doi:10.47639/0130-9358_2023_1_52
S. K. Rososhek, “Groups: View from the Computer Program VISAL / Commentary: Rotation Group of a Tetrahedron,” Computer Tools in Education, no. 5, pp. 40–55, 2000 (in Russian).
S. V. Rybin, Discrete Mathematics and Informatics: textbook for universities, St. Petersburg, Russia: Lan, 2022 (in Russian).
V. G. Boltyansky and I. M. Yaglom, Transformations. Vectors. A guide for teachers, Moscow: Prosveshcheniye, 1964 (in Russian).
V. Dubrovskii, “Visualization of Functional Dependences in Dynamic Geometry Systems,” Computer Tools in Education, no. 4, pp. 93–112, 2020 (in Russian); doi:10.32603/2071-2340-2020-4-93-112
E. B. Yagunova, “Text tasks: common sense and elementary skills,” Computer Tools in School, no. 4, pp. 6–12, 2012 (in Russian).
G. Polya, How to Solve It. A guide for teachers, Moscow: GIZ MP RSFSR, 1961 (in Russian).
. G. Polya, Mathematical discovery, Moscow: Nauka, 1970 (in Russian).
S. G. Ivanov, Computer support for solving mathematical problems as a means of organizing students productive activities, Diss. сandidate of pedagogical sciences, Moscow, 2004 (in Russian).
D. I. Mantserov, “Verifier-KD environment: verification of solutions to problems in mathematics,” Computer Tools in Education, no. 4, pp. 36–41, 2006 (in Russian).
O. V. Perchenok, Models and algorithms for verifying solutions to problems in e-learning systems, Diss. сandidate of technical sciences, St. Petersburg, Russia, 2013 (in Russian).
P. J. Rich and M. B. Langton, “Computational Thinking: Toward a Unifying Definition,” in Competencies in Teaching, Learning and Educational Leadership in the Digital Age, pp. 229–242, Springer, Cham, 2016; doi:10.1007/978-3-319-30295-9_14
D. Weintrop et al., “Defining Computational Thinking for Mathematics and Science Classrooms,” Journal of Science Education and Technology, vol. 25, no. 1, pp. 127–147, 2016; doi:10.1007/s10956-015-9581-5
C. Angeli and M. Giannakos, “Computational thinking education: issues and challenges,” Computers in Human Behavior, vol. 105, pp. 1–3, 2020; doi:10.1016/j.chb.2019.106185
V. Dolgopolovas, V. Dagiene, S. Pozdniakov, and A. Liaptsev, “Developing Computational Thinking Skills to Foster Student Research: Contemporary Scientific Education Through Modeling and Simulations,” in N. Rezaei ed., Integrated Education and Learning. Integrated Science, vol. 13, pp. 417–443, Springer, Cham, 2022; doi:10.1007/978-3-031-15963-3_23
A. D. Alexandrov, “About geometry at school,” Mathematics in school, no. 3, pp. 56–62, 1980 (in Russian).
J. H. Poincareˊ About science, Moscow: Nauka, 1990 (in Russian).
M. Minsky, The Society of Mind, NY: Simon & Schuster, 1986.
M. I. Bashmakov, Mathematics: a textbook for early institutions and avg. prof. education, Moscow: Academia, 2013 (in Russian).
F. Mosteller, “Fifty challenging problems in probability with solutions,” Moscow: Nauka, 1975 (in Russian).
S. N. Pozdniakov, A. S. Chukhnov, and N. N. Pangina,. “Analysis of the Understanding of the Material of Theoretical Informatics in Competitions and Olympiads in Informatics,” Computer tools in education, no. 2, pp. 55–67, 2018.
S. Pozdnyakov, A. Chukhnov, and S. Rybin, “Computer Tools for Supporting of Constructive Tasks in Discrete Mathematics for Engineering Education,” in Proc. of IV International Conference on Information Technologies in Engineering Education (Inforino), 2018, pp. 1–4, 2018; doi:10.1109/inforino.2018.8581829
A. S. Chukhnov, “Constructive Tasks as a Tool of Invasive and Non-invasive Assessment of Knowledge,” Computer tools in education, no. 3, pp. 96–104, 2019; doi:10.32603/2071-2340-2019-3-96-104
O. D. Vladimirskaya, Socio-pedagogical conditions for organizing the activities of an external student as an educational institution, Diss. сandidate of pedagogical sciences, St. Petersburg, Russia, 1999.
N. A. Vavilov,“Mathematical proof: yesterday, today, tomorrow,” in Joint meeting of the St. Petersburg Mathematical Society and the Section of the House of Scientists. 23 mar. 2010, St. Petersburg, Russia, 2010. [Online]. Available: https://www.mathnet.ru/php/seminars.phtml?presentid=2035&option_lang=
R. Courant and H. Robbins, What is Mathematics? An elementary approach to Ideas and methods?, Moscow: MTsNMO, 2019 (in Russian).
S. Pozdniakov, “Computers in the productive learning of mathematics,” A. Shvarts ed., in Proc. of the PME and Yandex Russian conference: Technology and Psychology for Mathematics Education, Moscow: HSE Publishing House, pp. 77–92, 2019 (in Russian).
F. Adlaj and S. N. Pozdnyakov, “Digital Representations of Mathematical Objects in the Context of Various Forms of Representation of Mathematical Knowledge,” Computer tools in education, no. 1, pp. 58–86, 2020 (in Russian); doi:10.32603/2071-2340-2020-1-58-86
S. L. Rubinshtein, Fundamentals of General Psychology, St. Petersburg, Russia: Piter, 2017 (in Russian).
E. R. Guthrie, “Conditioning as a principle of learning,”Psychological Review, vol. 37, pp. 412–428, 1930.
CTGV, “Anchored instruction and situated cognition revisited,” Educational Technology, vol. 33, no. 3, 52–70, 1993.
S. Peipert, Mindstorms: Children, Computers, and Powerful Ideas, Moscow: Pedagogika, 1989 (in Russian).
L. S. Vygotskii, Human Development Psychology, Moscow: Smysl, Eksmo, 2005 (in Russian).
A. N. Leont’ev, Activity, Consciousness, and Personality, vol. 2, Moscow: Pedagogika, 1983 (in Russian).
Материал публикуется под лицензией: