Концептуальная модель системы автоматизации рекомендаций в отношении организации системы проведения дистанционных занятий
Аннотация
В данной работе представлена концептуальная модель системы, позволяющей автоматизировать предложение рекомендаций в отношении способов проведения дистанционных занятий. В качестве исходных данных для системы выступают ссылки на аккаунты обучающихся в популярных русскоязычных социальных сетях. Система выгружает доступные сведения по предоставленным ссылкам, анализирует извлеченные данные и, в соответствии с результатами анализа, дает рекомендации к проведению занятий в онлайн (дистанционном) формате. Общей целью направления
исследований является переход к современным системам цифровизации образовательного процесса. Цель данной статьи состоит в построении концептуальной модели системы автоматизации рекомендаций в отношении способов проведения дистанционных занятий с обучающимися. Теоретическая значимость работы заключается в разработке новой концептуальной модели, которая ляжет в основу дальнейших построений методов, моделей, алгоритмов и реализации системы. Полученные результаты могут использоваться для разработки практических систем повышения
качества образования и в рамках исследований в области дидактики.
Литература
I. R. Gafurov, G. I. Ibragimov, A. M. Kalimullin, and Т. B. Alishev, “Transformation of Higher Education During the Pandemic: Pain Points,” Higher Education in Russia, vol. 29, no. 10, pp. 101–112, 2020 (in Russian); doi: 10.31992/0869-3617-2020-29-10-101-112
“Policy Brief: Education during COVID-19 and beyond,” in www.un.org. [Online]. Available: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2020/08/sg_policy_brief_covid-19_and_education_august_2020.pdf
V. K. Dyachenko, Novaya didaktika [New didactics], Moscow: Public education, 2000 (in Russian).
A. C. E. S. Lima and L. N. de Castro, “A multi-label, semi-supervised classification approach applied to personality prediction in social media,” Neural Networks, vol. 58, pp. 122–130, 2014; doi: 10.1016/j.neunet.2014.05.020
Т. V. Tulupyeva, А. S. Tafinceva, and А. L. Tulupyev, “An approach to personality analysis in digital footprints,” Vestnik psihoterapii, vol. 60, no. 65, pp. 124–137, 2016 (in Russian).
Т. V. Tulupyeva, A. V. Suvorova, А. А. Azarov, А. L. Tulupyev, and N. V. Bordovskaya, “Сomputer tools in the analysis of students’ digital footprints in social network: possibilities and primary results,” Сomputer tools in Education, no. 5, pp. 3–13, 2015 (in Russian).
D. Xue, Z. Hong, S. Guo, L. Gao, L. Wu, J. Zheng, and N. Zhao, “Personality recognition on social media with label distribution learning,” IEEE Access, vol. 5, no. 7956172, pp. 13478–13488, 2017; doi: 10.1109/ACCESS.2017.2719018
М. А. Stankevich, N. А. Ignatiev, I. V. Smirnov, and N. V. Kiselnikova, “Personality traits prediction from vkontakte social media,” Voprosy kiberbezopasnosti, vol. 4, no. 32, pp. 80–87, 2019 (in Russian); doi: 10.21681/2311-3456-2019-4-80-87
Y. Kim and J.H. Kim, “Using computer vision techniques on Instagram to link users’ personalities and genders to the features of their photos: An exploratory study,” Information Processing and Management, vol. 54, no. 6, pp. 1101–1114, 2018; doi: 10.1016/j.ipm.2018.07.005
F. V. Bushmelov, М. V. Abramov, and Т. V. Tulupyeva, “Adaptive Method of Color Selection in Application to Social Media Images,” CEUR Workshop Proceedingsthis, no. 2782, pp. 252-–257, 2020.
J. H. Kim and Y. Kim, “Instagram user characteristics and the color of their photos: Colorfulness, color diversity, and color harmony,” Information Processing and Management, vol. 56, no. 4, pp. 1494–1505, 2019; doi: 10.1016/j.ipm.2018.10.018
I. Anderson, S. Gil, C. Gibson, S. Wolf, W. Shapiro, O. Semerci, and D. Greenberg, “"Just the Way You Are": Linking Music Listening on Spotify and Personality,” Social Psychological and Personality Science, vol. 12, no. 4, pp. 561–572, 2020; doi: 10.1177/1948550620923228
K. S. Meng and L. Leung, Factors influencing TikTok engagement behaviors in China: An examination of gratifications sought, narcissism, and the Big Five personality traits. Telecommunications Policy, 2021, no. 45 (7), 102172. doi: 10.1016/j.telpol.2021.102172
K. G. Erdineeva and V. S. Chernyavskaya, “Prediktory rezul’tativnosti obrazovaniya studentov v kontekste samoraskrytiya ih sposobnostej” [Predictors of student education performance in the context of self-disclosure of their abilities], Scientific Review. Series 2: Humanities, no. 6, pp. 78–90, 2017; doi: 10.26653/2076-4685-2017-6-08 (in Russian)
I. A. Novikova and A. A. Vorobyeyva, “Big five factors and academic achievement in russian students,” Psychology in Russia: State of the Art, vol. 10, no. 4, pp. 93–106, 2017; doi: 10.11621/pir.2017.0409
F. Patterson, A. Knight, J. Dowell, S. Nicholson, F. Cousans, and J. Cleland, “How effective are selection methods in medical education? A systematic review,” Medical Education, no. 50, pp. 36–60, 2016; doi: 10.1111/medu.12817
E. Idrizi, S. Filiposka, and V. Trajkovik, “Analysis of Success Indicators in Online Learning,” International Review of Research in Open and Distance Learning, vol. 22, no. 2, pp. 205–223, 2021; doi: 10.19173/irrodl.v22i2.5243
S. Lavy, “Who benefits from group work in higher education? An attachment theory perspective,” Higher Education, vol. 73, no. 2, pp. 175–187, doi: 10.1007/s10734-016-0006-z
J. M. Amala, K. R. Lakshmana, and P. K. P. Hari, “Impact of learning style and personality traits on students in academics,” International Journal of Recent Technology and Engineering, no. 4, pp. 224–227, 2019.
G. Kvon, V. Vaks, and O. Pozdeeva, “Using the Likert scale in the study of students’ motivational factors,” Scientific-methodological electronic journal Koncept, no. 11, pp. 84–96, 2018; doi: 10.24411/2304-120X-2018-11086
K. S. Taber, “The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education,” Research in Science Education, vol. 48, no. 6, pp. 1273–1296, 2018; doi: 10.1007/s11165-016-9602-2
V. Musina, “Bayesian belief networks as probabilistic graphical model for medical risk assessment,” SPIIRAS Proceedings, vol. 1, no. 24, pp. 135–151, 2014; doi: 10.15622/sp.24.9
M. S. Frolova, A. A. Korepanova, and M. V. Abramov, “Assessing the Degree of the Social Media User’s Openness Using an Expert Model Based on the Bayesian Network,” in Proc. 2021 XXIV International Conference on Soft Computing and Measurements (SCM), 2021, pp. 52–55; doi: 10.1109/SCM52931.2021.9507111
A. L. Tulupyev, Algebraicheskie bajesovskie seti: logiko-veroyatnostnaya graficheskaya model’ baz fragmentov znanij s neopredelennost’yu [Algebraic Bayesian Networks: Logical-Probabilistic Graphical Model of Knowledge Fragment Bases with Uncertainty], 2009 (in Russian).
V. I. Donskoi and A. I. Bashta, Diskretnye modeli prinyatiya reshenij pri nepolnoj informacii [Discrete decision-making models with incomplete information], Sinferopol, Russia: Tavria, 1992 (in Russian).
Материал публикуется под лицензией: