Комбинированный подход к выявлению аномалий в беспроводных сенсорных сетях на примере системы управления водоснабжением
Аннотация
Статья описывает подход к выявлению аномалий применительно к беспроводным сенсорным сетям (WSN). Он основан на комбинировании методов визуального анализа данных и методов машинного обучения. Данный подход апробирован на примере WSN управления водоснабжением. Для проверки разработаны программно-аппаратный прототип системы и программная модель для генерации необходимых наборов данных для формирования моделей детектирования и их тестирования. Проведенные эксперименты показали высокое качество детектирования, что показывает применимость комбинированного подхода для выявления аномалий к использованию на практике
Литература
D. Levshun, D. Gaifulina, A. Chechulin, and I. Kotenko, “Problemnye voprosy informatsionnoi bezopasnosti kiberfizicheskikh sistem” [Problematic Issues of Information Security of Cyber- Physical Systems], Informatics and automation, vol. 19, no. 5, pp. 1050–1088, 2020 (in Russian); doi: 10.15622/ia.2020.19.5.6
J. Shin, Y. Baek, Y. Eun, and S. H. Son, “Intelligent sensor attack detection and identification for automotive cyber-physic systems,” in Proc. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 2017, pp. 1–8; doi: 10.1109/SSCI.2017.8280915
R. Wang, H. Song, Y. Jing, K. Yang, Y. Guan, and J. Sun, “A Sensor Attack Detection Method in Intelligent Vehicle with Multiple Sensors,” in Proc. 2019 IEEE International Conference on Industrial Internet (ICII), Orlando, FL, USA, 2019, pp. 219–226; doi: 10.1109/ICII.2019.00047
J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning,” in Proc. 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 2017, pp. 1058–1065; doi: 10.1109/ICDMW.2017.149
M. Raciti, J. Cucurull, and S. Nadjm-Tehrani, “Anomaly Detection in Water Management Systems,” J. Lopez, R. Setola, and S. D. Wolthusen, eds., Critical Infrastructure Protection, Heidelberg, Berlin: Springer, vol. 7130, pp. 98–119, 2012; doi: 10.1007/978-3-642-28920-0_6
E. Novikova, M. Bestuzhev, and I. Kotenko, “Anomaly Detection in the HVAC System Operation by a RadViz Based Visualization-Driven Approach,” S. Katsikas et al., eds., in Computer Security. CyberICPS 2019, SECPRE 2019, SPOSE 2019, ADIoT 2019, vol. 11980, 2020, pp. 402–418; doi: 10.1007/978-3-030- 42048-2_26
D. Herr, F. Beck, and T. Ertl, “Visual Analytics for Decomposing Temporal Event Series of Production Lines,” in Proc. 22nd International Conference Information Visualisation (IV), Fisciano, Italy, 2018, pp. 251–259; doi: 10.1109/iV.2018.00051
Y. Shi, Y. Liu, H. Tong, J. He, G. Yan and N. Cao, “Visual Analytics of Anomalous User Behaviors: A Survey,” IEEE Transactions on Big Data, vol. 14, no. 8, pp. 1–20, 2015; doi: 10.1109/TBDATA.2020.2964169
S. Y. Ji, B. K. Jeong, and D. H. Jeong, “Evaluating visualization approaches to detect abnormal activities in network traffic data,” Int. J. Inf. Secur., vol. 20, 331–345, 2020; doi: 10.1007/s10207-020-00504-9
A. Meleshko, V. Desnitsky, and I. Kotenko, “Machine learning based approach to detection of anomalous data from sensors in cyber-physical water supply systems,” IOP Conference Series: Materials Science and Engineering, vol. 709, pp. 1–7, 2019.
L. J. P. van der Maaten and G. E. Hinton, “Visualizing High-Dimensional Data Using t-SNE,” Journal of Machine Learning Research, vol. 9, no. 11, pp. 2579–2605, 2008.
Материал публикуется под лицензией: