Цифровые представления математических объектов в контексте различных форм представления математического знания
Аннотация
Данная статья посвящена сравнительному анализу результатов проекта ReMath (Representing Mathematics with digital media), связанного с изучением цифровых представлений математических понятий. Теоретические положения и выводы этого проекта будут анализироваться на основе теории информационной среды [1], разработанной с участием одного из авторов этой статьи. Выполненный в этой работе анализ частично совпадает с выводами проекта ReMath, но использует другую основу исследования, базирующуюся в большей степени на работах отечественных ученых. Представляет интерес анализ работ проекта ReMath с концептуальных позиций, изложенных в этой монографии, и установление связей между понятиями и отличий в понимании влияния компьютерных инструментов (артефактов) на процесс обучения математике. В то же время авторы оспаривают трактовку зарубежными исследователями некоторых вопросов в работах Выготского и дают свой взгляд на виды и функции цифровых артефактов в обучении математике.
Литература
M. I. Bashmakov, S. N. Pozdnyakov, and N. A. Reznik, Informatsionnaya sreda obucheniya [Learning Information Environment], Saint Petersburg, Russia: Svet, 1997 (in Russian).
S. L. Rubinshtein, Osnovy obshchei psikhologii [Fundamentals of General Psychology], Saint Petersburg, ussia: Piter, 2017 (in Russian).
A. N. Leont’ev, Deyatel’nost’ Soznanie. Lichnost’ [Activity, Consciousness, and Personality], vol. 2, Moscow: Pedagogika, 1983 (in Russian).
L. S. Vygotskii, Psikhologiya razvitiya cheloveka [Human Development Psychology], Moscow: Smysl, Eksmo, 2005 (in Russian).
A. Poincare, O nauke [The Foundations of Science], Moscow: Gl. red. fiz.-mat. lit., 1990 (in Russian).
M. Minsky, “Emotions and the Society of Mind,” M. Clynes, J. Panksepp, eds., Emotions and Psychopathology, Springer, pp. 171–179, 1988; doi: 10.1007/978-1-4757-1987-1_7
C. C. Lavrov, “Prikladnye voprosy matematiki i programmirovanie” [Applied Mathematics and Programming Issues], Computer tools in education, no. 5, pp. 13–16, 2000 (in Russian).
R. Feinman, R. Leiton, and M. Sends, Feinmanovskie lektsii po fizike [The Feynman Lectures on Physics], Moscow: Mir, 1977 (in Russian).
Ya. B. Zel’dovich and I. M. Yaglom Vysshaya matematika dlya nachinayushchikh fizikov i tekhnikov [Higher mathematics for beginning physicists and technicians], Moscow: Nauka, 1982 (in Russian).
H. Rogers Jr., “Physics and Mathematics”, in Mathematics tomorrow, L. A. Steen ed., New York, Heidelberg: Springer-Verlag, pp. 231–236, 1981; doi: 10.1007/978-1-4613-8127-3_23
A. D. Aleksandrov, “O geometrii v shkole” [About geometry at school], Matematika v shkole, no. 3, pp. 56–62, 1980 (in Russian).
P. Ya. Gal’perin, “Formirovanie umstvennykh deistvii” [The formation of mental action], in Khrestomatiya po obshchei psikhologii. Psikhologiya myshleniya, Yu. B. Gippenreiter and V. V. Petukhova, eds., Moscow: Izd-vo MGU, 1981 (in Russian).
V. I. Arnol’d, Gyuigens i Barrou, N’yuton i Guk — pervye shagi matematicheskogo analiza i teorii katastrof, ot evol’vent do kvazikristallov [Huygens and Barrow, Newton and Hook are the first steps in mathematical analysis and catastrophe theory, from involutes to quasicrystals], Moscow: Nauka. Gl. red. fiz.-mat. lit., 1989 (in Russian).
S. Peipert, Perevorot v soznanii. Deti, komp’yutery i plodotvornye idei [Mindstorms: Children, Computers, and Powerful Ideas], Moscow: Pedagogika, 1989 (in Russian).
S. Papert, “An Exploration in the Space of Mathematics Educations,” Int J Comput Math Learning, vol. 1, no. 1, p. 95–123, 1996; doi: 10.1007/BF00191473
R. Noss and C. Hoyles, Windows on mathematical meanings: Learning cultures and computers, vol. 17, pringer Science & Business Media, 1996; doi: 10.1007/978-94-009-1696-8
M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds, Cambridge, MA, USA: MIT Press, 1997.
U. Wilensky, “Modeling Rugby: Kick First, Generalize later?” Int J Comput Math Learning, vol. 1, pp. 125–131, 1996.
J. V. Wertsch, ed., Culture, Communication and Cognition: Vygotskian Perspectives, New York, USA: Cambridge University Press, 1985.
J. Confrey, “How Compatible are Radical Constructivism, Sociocultural Approaches, and Social Constructivism?” L. P. Steffe and J. Gale, eds., Constructivism in Education, pp. 185–225, 1995.
L. D. Edwards, “Embodying mathematics and science: Microworlds as representations,” The Journal of Mathematical Behavior, vol. 17, no. 1, pp. 53–78, 1998; doi: 10.1016/S0732-3123(99)80061-3
P. Verillon and P. Rabardel, “Cognition and Artifacts: A Contribution to the Study of Though in Relation to Instrumented Activity,” Eur J Psychol Educ , vol. 10, no. 1, art. 77, 1995; doi: 10.1007/BF03172796
I. S. Yakimanskaya, Razvitie prostranstvennogo myshleniya shkol’nikov [The development of spatial thinking of schoolchildren], Moscow: Pedagogika, 1980 (in Russian).
S. I. Shapiro, Ot algoritmov — k suzhdeniyam (Eksperimenty po obucheniyu elementam matematicheskogo myshleniya) [From Algorithms to Judgments (Experiments on teaching elements of mathematical thinking], Moscow: Sovetskoe radio, 1973 (in Russian).
J.-B. Lagrange and J.-M. Gelis, “The Casyop´ee project: a Computer Algebra Systems environment for students’ better access to algebra,” International Journal of Continuing Engineering Education and Life Long Learning, vol. 18, no. 5/6, pp. 575–584, 2008; doi: 10.1504/IJCEELL.2008.022164
L. Bannon and S. Budker, ¨ “Constructing Common Information Spaces,” in Proc. of the Fifth European Conference on Computer Supported Cooperative Work, Springer, Dordrecht, pp. 81–96, 1997; doi: 10.1007/978-94-015-7372-6_6
G. Chiappini, B. Pedemonte, and E. Robotti, “Using Alnuset to construct the notions of equivalence and equality in algebra,” in Learning to Live in the Knowledge Society. IFIP WCC TC3 2008, vol. 281, Springer, Boston, MA, pp. 345–348, 2008; doi: 10.1007/978-0-387-09729-9_50
M. M. Nazarov and S. N. Pozdnyakov, Komp’yuternoe modelirovanie fizicheskikh yavlenii na urokakh fiziki i informatiki. Metodicheskie rekomendatsii v pomoshch’ uchitelyam fiziki, matematiki i informatiki [Computer modeling of physical phenomena in the lessons of physics and computer science. Guidelines to help teachers of physics, mathematics and computer science], Osh, Kyrgyzstan: Iz-vo OIUU, 1991 (in Russian).
F. Moustaki, G. Psycharis, and C. Kynigos, “Making sense of structural aspects of equations by using algebraic-like formalism,” in Proc. of CERME 6, January 28th-February 1st 2009, Lyon France, 2010, pp. 1419–1428.
M. Artigue, “Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work,” International Journal of Computers for Mathematical Learning, vol. 7, no. 3, pp. 245–274, 2002; doi: 10.1023/A:1022103903080
M. Artigue, “Teaching Mathematics in the Digital Era: Challenges and Perspectives,” in Proc. of 6th HTEM, Federal University de Sao Carlos, Brasil, 2013, pp. 1–20.
M. Artigue and M. A. Mariotti, “Networking theoretical frames: the ReMath enterprise,” Educational studies in mathematics, vol. 85, no. 3, pp. 329–355, 2014; doi: 10.1007/s10649-013-9522-2
N. Calder, “The layering of mathematical interpretations through digital media,” Educ Stud Math, vol. 80, pp. 269–285, 2012; doi: 10.1007/s10649-011-9365-7
C. Hoyles, “Transforming the mathematical practices of learners and teachers through digital technology,” Research in Mathematics Education vol. 20, no. 3, pp. 209–228, 2018; doi: 10.1080/14794802.2018.1484799
C. Kynigos and J-B. Lagrange, “Cross-analysis as a tool to forge connections amongst theoretical frames in using digital technologies in mathematical learning,” Educ Stud Math, vol. 85, pp. 321–327, 2014; doi: 10.1007/s10649-013-9521-3
J-B. Lagrange, “Using Symbolic Calculators to Study Mathematics,” in The Didactical Challenge of Symbolic Calculators. Mathematics Education Library, D. Guin, K. Ruthven, L. Trouche, eds., vol. 36, Springer, Boston, MA, 2005, pp. 113–135; doi: 10.1007/0-387-23435-7_6
J-B. Lagrange and C. Kynigos, “Digital technologies to teach and learn mathematics: Context and recontextualization,” Educ Stud Math, vol. 85, pp. 381–403, 2014; doi: 10.1007/s10649-013-9525-z
C. Morgan and C. Kynigos, “Digital artefacts as representations: forging connections between a constructionist and a social semiotic perspective,” Educ Stud Math, vol. 85, pp. 357–379, 2014; doi: 10.1007/s10649-013-9523-1
J-F. Nicaud and C. Viudez, First Version of the Dynamic Digital Artrefacts, hal-00190488. [Online]. Available at https://telearn.archives-ouvertes.fr/hal-00190488
Материал публикуется под лицензией: