Средства автоматизации разработки учебного контента по физике и химии для сопровождения массового индивидуализированного образования.
Аннотация
В статье рассматривается базовая структура и варианты программной реализации электронных конструкторов компьютерных моделей для естественнонаучного образования. Обсуждаются принципы физического объектно-ориентированного моделирования (PhOOM) - подхода для создания электронных образовательных приложений для изучения естественных наук. Приведены примеры реализации этого подхода для курсов физики и химии. Подход является элементом MOOC-технологии, специфика которого позволяет легко адаптировать образовательную среду к нужной задаче. Дальнейшая разработка подхода - это развитие систем автоматизированной генерации задач с элементами исследований, основанных на моделировании в реальном времени, для продвинутых курсов физики плазмы. Этот подход позволяет объединить в одном интерактивном и легко управляемом пользователем электронном продукте генерацию электронной модели явления и создание тестовой задачи с целью разработки многоуровневого контента для индивидуализированного естественнонаучного образования.
Литература
[2] H. M. Wasfy et al., “The education sector revolution: the automation of education,” in 120th Annual American Society for Engineering Education Conference & Exposition, Atlanta, GA, 2013.
[3] E. I. Butikov and A. S. Chirtsov, “Zakony dvizheniya makroskopicheskikh tel – paket obuchayushchikh i demonstratsionnykh programm po kursu obshchei fiziki” [The laws of motion of macroscopic bodies - a package of training and demonstration programs in the course of general physics], in III Mezhdunarodnaya konferentsiya “Model-oriented Data Analysis”, Saint-Petersburg, Russia, 1992 (in Russian).
[4] E. I. Butikov, “Rol' modelirovaniya v obuchenii fizike” [The role of modeling in teaching physics], Computer tools in education journal, no. 5, pp. 3–20, 2002 (in Russian).
[5] E. I. Butikov, “Physics of oscillations” in Educational Software Package, Saint-Petersburg, Russia, 1992.
[6] E. I. Butikov, “Planets and satellites” in Educational Software Package, Saint-Petersburg, Russia, 1992.
[7] S. M. Kozel, V. A. Orlov et al., Otkrytaya fizika [Open Physics], Moscow, Russia, 2008 (in Russian).
[8] A. S. Chirtsov, “Dvizhenie zaryazhennykh chastits v silovykh polyakh — paket obuchayushchikh programm i fizicheskii konstruktor” [The motion of charged particles in force fields is a package of training programs and a physical designer], in Trudy Mezhdunarodnoi konferentsii “Sovremennye tekhnologii obucheniya,” Saint-Petersburg, Russia, 1995, p. 56 (in Russian).
[9] “Interactive physics — physics simulation software for the classroom” Design Simulation Technologies, 2016, [online], Available: http://www.design-simulation.com/IP/Index.php
[10] LabVIEW, 2016, [online], Available: http://www.labview.ru
[11] “Living physics,” Design Simulation Technologies, 2010, [online], Available: https://www.design-simulation.com/
[12] D. V. Bayandin and O. I. Mukhin, Virtual'naya fizika [Virtual physics], (STRATUM), 2010 (in Russian).
[13] “Konstruktor virtual'nykh eksperimentov. Fizika” [The designer of virtual experiments. Physics], Crocodile Clips, 2009, [online], Available: https://www.yenka.com/
[14] Yu. B. Kolesov and Yu. B. Senichenkov, “Matematicheskoe modelirovanie v kartinkakh ili risuem povedenie dinamicheskikh sistem s pomoshch'yu “MODEL VISION” [Mathematical modeling in pictures or draw behavior of dynamic systems with the help of "MODEL VISION"], Computer tools in education journal, no. 5, pp. 45–52, 1998 (in Russian).
[15] D. V. Bayandin and O. I. Mukhin, “Model'nyi praktikum i interaktivnyi zadachnik po fizike na osnove sistemy STRATUM 2000” [Model practice and interactive physics tutorial on the basis of the STRATUM 2000 system], Komp'yuternye uchebnye programmy, no. 3, pp. 28–37, 2002 (in Russian).
[16] “Elektrichestvo i magnetizm. Optika i volny. Virtual'nye laboratorii ENKA” [Electricity and magnetism. Optics and waves. Virtual laboratories of ENKA], INT – Institut Novykh Tekhnologii, 2010, [online], Available: http://www.int-edu.ru/content/elektrichestvo-i-magnetizm-optika-i-volny-virtualnye-laboratorii-enkam (in Russian)
[17] Devyataya nauchno-prakticheskaya konferentsiya “Obrazovatel'nye, nauchnye i inzhenernye prilozheniya v srede LabVIEW i tekhnologii National Instruments – 2010” [Ninth Scientific and Practical Conference "Educational, Scientific and Engineering Applications in the LabVIEW Environment and National Instruments Technologies - 2010] Moscow, Russia: RUDN, 2010 (in Russian).
[18] G. V. Popov, and A. I. Tikhonov, “Komp'yuternaya sistema imitatsii dinamicheskikh protsessov v silovykh transformatorakh” [Computer simulation system for dynamic processes in power transformers], Elektro, no. 2, 2004 (in Russian).
[19] A. S. Chirtsov, “Seriya elektronnykh sbornikov mul'timediinykh materialov po kursu obshchei fiziki: novye podkhody k sozdaniyu elektronnykh konstruktorov virtual'nykh fizicheskikh modelei s prostym udalennym dostupom” [A series of electronic collections of multimedia materials on the course of general physics: new approaches to the creation of electronic designers of virtual physical models with simple remote access], Computer tools in education journal, no. 6, pp. 42–56, 2010 (in Russian).
[20] V. M. Mikushev, Ya. M. Somnov, and A. S. Chirtsov, “Kontseptsiya ispol'zovaniya MOOS-tekhnologii dlya distantsionnogo aktivnogo individualizirovannogo obucheniya fizike i ee aprobatsiya” [The concept of using MOOS-technologies for remote active individualized training in physics and its approbation], Mezhdunarodnyi zhurnal eksperimental'nogo obrazovaniya, no. 12, pp. 359–362, 2015 (in Russian).
[21] V. P. Marek, V. M. Mikushev, and A. S. Chirtsov, “Ispol'zovanie informatsionnykh tekhnologii pri sozdanii innovatsionnoi obrazovatel'noi sredy na fizicheskom fakul'tete klassicheskogo universiteta” [The use of information technologies in the creation of an innovative educational environment at the physics faculty of the classical university], Mezhdunarodnyi zhurnal eksperimental'nogo obrazovaniya, no. 6, pp. 23–26, 2009 (in Russian).
[22] S. K. Stafeev, A. S. Mustafaev, A. S. Chirtsov, “Ispol'zovanie fizicheskogo ob"ektno-orientirovannogo modelirovaniya dlya podderzhki uchebnoi i issledovatel'skoi aktivnosti” [Using physical object-oriented modeling to support learning and research activities], in Sb. nauch. tr. II Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennye obrazovatel'nye tekhnologii v prepodavanii estestvenno-nauchnykh i gumanitarnykh distsiplin,” Saint-Petersburg, Russia, 2015 (in Russian).
[23] V. P. Marek and A. S. Chirtsov, “Seriya elektronnykh sbornikov mul'timediinykh materialov po kursu obshchei fiziki: original'nye podkhody k sozdaniyu mul'timediinykh resursov i ikh ispol'zovaniyu” [A series of electronic collections of multimedia materials on the course of general physics: original approaches to the creation of multimedia resources and their use], Computer tools in education journal, no. 1, pp. 58–72, 2012 (in Russian)
[24] A. S. Chirtsov, V. M. Mikushev, and O. N. Chaikovskaya, Ispol'zovanie fizicheskogo ob"ektno-orientirovannogo modelirovaniya v MOOS po mekhanike [Use of physical object-oriented modeling in the MEP for mechanics], Tomsk, Russia: Izd-vo NTL, 2015 (in Russian).
[25] Yu. B. Kolesov and Yu. B. Senichenkov, “Komp'yuternoe modelirovanie v nauchnykh issledovaniyakh i v obrazovanii” [Computer modeling in scientific research and education], Computer tools in education journal, no. 1, 2003.
[26] S. V. Sychev, Avtomaticheskaya generatsiya testovykh zadanii po khimii s kachestvennymi i kolichestvennymi variatsiyami [Automatic generation of test tasks in chemistry with qualitative and quantitative variations], Informatika i obrazovanie, no. 5 (274), pp. 46–53, 2016 (in Russian)
[27] S. V. Sychov, ChemGenerator, 2016, [online], Available: http://www.chemgenerator.ru/
[28] S. V. Sychev and T. G. Nazina, Sbornik zadach po khimii 4 varianta s otvetami i skhemami reshenii [Collection of problems in chemistry 4 options with answers and decision schemes], Saint-Petersburg, Russia: Nevskaya knizhnaya tipografiya, 2015 (in Russian).
[29] V. P. Marek and A. S. Chirtsov, “Ispol'zovanie komp'yuternykh tekhnologii i modelirovaniya dlya priblizheniya laboratornykh rabot k nauchnym issledovaniyam” [Use of computer technologies and modeling to bring laboratory work closer to scientific], Computer tools in education journal, no. 1, pp. 44–59, 2014 (in Russian).
[30] V. L. Granovskii, Elektricheskii tok v gaze. Ustanovivshiisya tok, Moscow, Russia: Nauka, 1971 (in Russian).
[31] M. V. Chernysheva et al., “Komp'yuternoe modelirovaniya pri izuchenii fizicheskikh protsessov v tlevshem razryade v vozdushnykh smesyakh pri nizkikh davleniyakh” [Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki], Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. No. 3 (91), pp. 140–148, 2014 (in Russian).
[32] A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Fizika tleyushchego razryada [Physics of a glow discharge], Saint-Petersburg, Russia: Lan', 2010 (in Russian).
[33] “Comsol 4.0a. Plasma module user guide,” in Cosmol, 2016, [online], Available: https://www.comsol.com/
[34] L. A. Vainshtein, I. I. Sobel'man, and E. A. Yukov, Secheniya vozbuzhdeniya atomov i ionov elektronami [Cross sections for the excitation of atoms and ions by electrons], Moscow, USSR: Nauka, 1973 (in Russian).
[35] V. A. Fok, Nachala kvantovoi mekhaniki [The Beginnings of Quantum Mechanics], Moscow, USSR: Nauka, 1976 (in Russian).
[36] I. I. Sobel'man, Vvedenie v teoriyu atomnykh spektrov [Introduction to the theory of atomic spectra], Moscow, USSR: Fizmatgiz, 1963 (in Russian).
[37] V. P. Marek and A. S. Chirtsov, “Elektronnye obrazovatel'nye resursy po fizike plazmy dlya novogo toma “Atomnaya i subatomnaya fizika” mul'timediinogo sbornika “Fizika: model', eksperiment, real'nost'” [Electronic educational resources on plasma physics for the new volume "Atomic and Subatomic Physics" of the multimedia collection "Physics: a model, an experiment, a reality"], in Mezhdunarodnaya konferentsiya “Fizika v sisteme sovremennogo obrazovaniya” (FSSO-13), Petrozavodsk, Russia, 2013 (in Russian).
[39] S. V. Sychov and A. S. Chirtsov, “Genetic Algorithm as a Means for Solving a Radial Schr¨ odinger Equations System,” in XIX IEEE International Conference on Soft Computing and Measurements (SCM), Issue 1, 2016, pp. 265–267.
[40] E. A. Bogdanov, A. A. Kudryavtsev, N. Ochikova, and A. S. Chirtsov, “Narushenie raspredeleniya Bol'tsmana dlya plotnosti elektronov plazmy v dvukhkamernykh ICP-razryadakh” [Violation of the Boltzmann distribution for the density of plasma electrons in double-chamber ICP discharges], Zhurnal tekhnicheskoi fiziki. Vol. 85, no.10, pp. 155–158, 2015 (in Russian).
[41] A. S. Chirtsov, M. V. Demidova, I. P. Kurlyandskaya, “Comment on “Use of dc Ar microdischarge with nonlocal plasma for identification of metal samples” [J. Appl. Phys.117, 133303 (2015)], J. Appl. Phys, no. 119, 136101, 2016. doi: 10.1063/1.4945396
[42] S. Eliseev, A. A. Kudryavtsev, H. Liu, Z. Ning, Z. Daren, and A. S. Chirtsov, “Transition from Glow Microdischarge to Arc Discharge with Thermionic Cathode in Argon at Atmospheric Pressure,” IEEE Transactions on Plasma Science, Vol. 44, Issue 11, pp. 2536–2544, 2016 doi: 10.1109/TPS.2016.2557587
[43] M. V. Chernysheva, A. S. Chirtsov, D. A. Shvager, “Sravnitel'nyi analiz plazmokhimicheskikh modelei dlya komp'yuternogo modelirovaniya tleyushchikh razryadov v vozdushnykh smesyakh” [Comparative analysis of plasma-chemical models for computer modeling of glow discharges in air mixtures], Nauchnotekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, Vol. 16, no. 5 (105), pp. 903–916, 2016 (in Russian).
Материал публикуется под лицензией: