Analysis of Image Processing Methods in the Context of a Basis for Recognizing Small Objects. Image processing methods for object recognition

Keywords: photo and video images, methods and algorithms for synthesis, analysis and improvement of image quality, machine vision, subband methods

Abstract

The article analyzes the existing methods of detecting small objects from images in the channels of technical vision against a background of noise. It is shown that the method of detecting images of small objects based on the calculation of the likelihood ratio using the estimation of the mathematical expectation of samples of spatially subband vectors and their covariance matrices is promising for further research. To solve the problem of detecting small objects from images of technical vision channels, as well as to prepare data for subsequent stages (recognition and identification), a subband analysis method based on the use of new basic functions is proposed as the main tool. An experimental assessment of the quality of detection of small-sized objects using the above-described method has been carried out, showing that acceptable indicators of the probability of correct detection (0.95) with a false alarm probability of 10^−4 are achieved with a signal-to-noise ratio of more than 14. Based on the fact that noise in images is not always statically independent and additive, the assessment of the influence of spatial spectral characteristics of noise is subject to further investigation. The analysis of the influence of a statistically independent additive noise process on the quality of detection and cognition is carried out. In this case, a set of source images containing images of small objects of the type of unmanned aerial vehicles was used. To search for an object in the analyzed image, a reference image of the object was used. In the course of the study, it was found that the family of dependencies of the probability of correct detection on the signal-to-noise ratio, taking into account the given probability of a false alarm when exposed to additive white noise, is a classic type characteristic of object detection algorithms. The necessary signal-to-noise ratio has been identified, which makes it possible to achieve an acceptable probability of correct detection. The results will allow us to form a way to compare the detection quality of small objects in images for various detection algorithms. Keywords: photo and video images, methods and algorithms for synthesis, analysis and improvement of image quality, machine vision, subband methods.

Author Biography

Alexander Popov, Belgorod State National Research University, 85 Pobedy Street, 308015, Belgorod, Russia

Postgraduate, Department of Information and Telecommunication Systems and Technologies, BelSU,  l.boris-gleb@yandex.ru

References

A. S. Krupskii, A. A. Nemerov, and S. S.Kulbaev, “Klassifikatsiya zadach po rabote s izobrazheniyami” [Classification of image manipulation tasks], Fundamental’nye i prikladnye issledovaniya, no. 16, pp. 130–132, 2014 (in Russian).

L. N. Chaban, Avtomatizirovannaya obrabotka aerokosmicheskoi informatsii pri kartografirovanii geoprostranstvennykh dannykh. Tutorial [Automated processing of aerospace information in geospatial data mapping. Tutorial], Moscow: MIIGAiK, 2013 (in Russian).

K. Sreedhar and B. Panlal, “Enhancement of Images Using Morphological Transformations,” International Journal of Computer Science & Information Technology (IJCSIT), vol 4, no. 1, pp. 33–50, 2012.

N. H. Farhat and B. J. Levin, “Image Dissection and Conversion at NonvisibleWavelengths,” Appl. Opt., vol. 9, pp. 765–769, 1970.

T. Celik and T. Tjahjadi, “Automatic Image Equalization and Contrast Enhancement Using Gaussian Mixture Modeling,” Transactions on Image Processing. IEEE, vol. 21, no. 1, pp. 145–156, 2012.

A. I. Efimov, “Razrabotka i issledovanie algoritmov sovmeshcheniya izobrazhenii ot bortovykh videodatchikov s virtual’noi model’yu mestnosti,” Dissertation of Candidate of Technical Sciences: 05.13.17, Ryazan State Radio Engineering University, Ryazan, Russia, 2016 (in Russian).

A. I. Efimov and A. I. Novikov, “Programmno-algoritmicheskii kompleks sovmeshcheniya izobrazheniiv aviatsionnykh sistemakh tekhnicheskogo zreniya” [Program-algorithmic complex of safety assurance in aviation vision systems], in Proc of the III International Conference on Information Technology and Nanotechnology (ITNT-2017), Samara: Novaya tekhnika, pp. 400–409, 2017 (in Russian).

W. Chen et al., “MR–CT image fusion method of intracranial tumors based on Res2Net,” BMC Medical Imaging, vol. 24, no. 1, 2024; doi:10.1186/s12880-024-01329-x

Q. Wang et al., “Image Fusion Method Based on Snake Visual Imaging Mechanism and PCNN,” Sensors, vol. 24, no. 10, p. 3077, 2024; doi:10.3390/s24103077

S. Anand and R. Sharma, “Pansharpening and spatiotemporal image fusion method for remote sensing,” Engineering Research Express, vol. 6, no. 2, p. 022201, 2024; doi:10.1088/2631-8695/ad3a34

M. Sun et al., “Multi-modal remote sensing image fusion method guided by local extremum mapsguided image filter,” Signal, Image and Video Processing, vol. 18, no. 5, pp. 4375–4383, 2024; doi:10.1007/s11760-024-03079-3

Z.-H Li et al., “Image registration algorithm for infrared and visible images based on contour polygon fitting,” Systems Engineering and Electronics, vol. 37, pp. 2872–2878, 2015.

V. I. Syryamkin and V. S. Shidlovskii, Korrelyatsionnoekstremal’nye radionavigatsionnye sistemy [Correlation-extreme radionavigation systems], Tomsk, Russia: Izd-vo Tom. un-ta. 2010 (in Russian).

B. A. Alpatov, P. V. Babayan, O. E. Balashov, A. A. Barantsev, and A. B. Fel’dman “Tekhnologiya analiza izobrazhenii dlya sistem tekhnicheskogo zreniya letatel’nykh apparatov,” [Image analysis technology for the system of technical zoning of flight vehicles], Izvestiya Yuzhnogo federal’nogo universiteta. Tekhnicheskie nauki, no. 2 (175), pp. 148–158, 2016 (in Russian).

B. A. Alpatov, P. V. Babayan, and V. V. Strotov, “Analiz tochnostnykh kharakteristik metodov slezheniya za fonovym izobrazheniem dlya bortovoi videoinformatsionnoi sistemy” [Accurate characterization analysis of background image sleep methods for an on-board video information system], Vestnik RGRTA, no. 20, pp. 3–10, 2007 (in Russian).

A. B. Fel’dman and D. Yu. Erokhin, “Kompleks algoritmov vydeleniya i proslezhivaniya dvizhushchikhsya ob"ektov dlya bortovoi sistemy tekhnicheskogo zreniya,” Tsifrovaya obrabotka signalov, no. 3, pp. 8–14, 2016 (in Russian).

A. N. Pavlov, “Veivlet-analiz i primery ego primeneniya” [Wavelet analysis and ego-application fitting], Obzory aktual’nykh problem nelineinoi dinamiki, vol. 17, no. 5, pp. 99–111, 2009.

A. K. Samantarayet at al, “An Effective Image Enhancement Algorithm for Single Image Haze Removal Based on Daubechies Wavelet Filter Bank,” Advances in Data-Driven Computing and Intelligent Systems, pp. 251–259, 2024; doi:10.1007/978-981-99-9531-8_20

M. Wu and Y. Hou, “Discrete Wavelet Analysis: A Mighty Approach for Image Segmentation,” EAI Endorsed Transactions on e-Learning, vol. 9, 2023; doi:10.4108/eetel.4266

E. G. Zhilyakov, I. I. Lubkov, and E. V. Bolgova, “Analiz i approksimatsiya funktsii po empiricheskim dannym na osnove subpolosnykh predstavlenii” [Analysis and approximation of functions by empirical data based on subband predictions], Economics. Information Technologies, vol. 49, no. 4, pp. 833–853, 2022 (in Russian).

E. G. Zhilyakov and A. A. Chernomorets, “O subpolosnom analize izobrazhenii” [On subband image analysis], in Proc. of 23rd International Conference on Computer Graphics and Vision, Sep. 16-20, 2013, Vladivostok, Russia, pp. 230–233, 2013 (in Russian).

A. A. Chernomorets, “Ob optimal’nom vydelenii subpolosnykh komponent izobrazhenii,” [On optimal extraction of subband components of an image], in Proc. of 23rd International Conference on Computer Graphics and Vision, Sep. 30 – Oct. 3, 2014, Rostov-on-Don, Russia, pp. 75–78, 2014 (in Russian).

E. G. Zhilyakov, A. A. Chernomorets, and A. N. Zalivin, “Ob effektivnosti metoda otsenivaniya znachenii dolei energii izobrazhenii na osnove chastotnykh predstavlenii” [Ob effektivnosti metoda otsenivaniya znachenii dolei energii izobrazhenii na osnove chastotnykh predstavlenii], Izvestiya OrelGTU. Informatsionnye sistemy i tekhnologii, vol. 2/52, no. 563, pp. 12–22, 2009 (in Russian).

E. G. Zhilyakov and A. A. Chernomorets, “O chastotnom analize izobrazhenii,” Voprosy radioelektroniki. Ser. EVT., vol. 1, pp. 94–103, 2010 (in Russian).

E. G. Zhilyakov and A. A. Chernomorets, “Ob optimal’nom vydelenii subpolosnykh komponent izobrazhenii,” [On optimal extraction of subband components of an image], Informatsionnye sistemy i tekhnologii, no. 1 (75), pp. 5–11, 2013 (in Russian).

I. I. Lubkov, E. G. Zhilyakov, D. I. Trubitsyna, and A. N. Zalivin, “Razrabotka metoda subpolosnogo szhatiya izobrazhenii” [Development of a method for subband image storage], Economics. Information Technologies, no. 49(1), pp. 195–204, 2022 (in Russian).

D. A. Chernomorets, V. M. Mikhelev, E. V. Bolgova, and A. A. Chronometers, “Subpolosnyi analiz izobrazhenii morskoi poverkhnosti na osnove kosinus-preobrazovaniya,” [Subband analysis of moral surface images based on cosine transformer], Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, vol. 19, no. 6, pp. 1072–1078, 2019.

L.-T. Ko et al., “A Unified Algorithm for Subband-Based Discrete Cosine Transform,” Mathematical Problems in Engineering, vol. 2012, no. 1, 2011; doi:10.1155/2012/912194

D. Mukherjee, “Parallel implementation of discrete cosine transform and its inverse for image compression applications,” The Journal of Supercomputing, vol. 80, no. 16, pp. 23712–23735, 2024; doi:10.1007/s11227-024-06343-y

S. V. Narasimhan, M. Harish, A. R. Haripriya, and N. Basumallick, “Discrete cosine harmonic wavelet transform and its application to signal compression and subband spectral estimation using modified group delay,” Signal, Image and Video Processing, vol. 3, no. 1, pp. 85–99, 2008; doi:10.1007/s11760-008-0062-7

V. A. Goloshchapova, A. N. Zalivin, E. M. Mamatov, and I. I. Oleinik, “Eksperimental’nye issledovaniya po raspoznavaniyu malorazmernykh ob"ektov na videoizobrazheniyakh pri ispol’zovanii mnogomernykh prostranstvenno-subpolosnykh vektorov” [Experimental studies on detecting malignant objects in video recordings when performing multidimensional spatial-subband vectors], Economics. Information Technologies, vol. 49, no. 2, pp. 432–440, 2022 (in Russian).

I. I. Oleinik, “Issledovanie reshayushchikh pravil raspoznavaniya ob"ektov v malobazovoi polyarizatsionnoi izmeritel’noi sisteme pri subpolosnoi obrabotke signalov” [Investigation of decisive rules for propagation of information about “ects” in small-base polyarization measurement system at subband signal processing], Economics. Information Technologies, vol. 47, no. 3, pp. 648–660, 2020 (in Russian).

I. I. Oleinik, “Predstavlenie signalov pri obrabotke informatsii v malobazovoi polyarizatsionnoi izmeritel’noi sisteme” [Signal propagation during information processing in a small-baseline polyarization measurement system], Economics. Information Technologies, vol. 47, no. 2, pp. 423–431, 2020 (in Russian).

E. V. Burdanova, E. G. Zhilyakov, I. I. Oleynik, A. V. Mamatov, and A. N. Nemtsev, “Decisive rule experimental studies to detect objects on the background of the earth surface using polarization differences of radar signals,” OMPUSOFT, An international journal of advanced computer technology, vol. 8, no. 6, pp. 3166–3170, 2019.

A. A. Chernomorets, E. V. Bolgova, and D. A. Chernomorets, “O kvazisubpolosnykh matritsakh kosinuspreobrazovaniya” [On quasi-subband cosine transform matrices], Nauchnyi rezul’tat. Informatsionnye tekhnologii, vol. 4, no. 3, pp. 11–19, 2019 (in Russian).

E. G. Zhilyakov, “Optimal’nye subpolosnye metody analiza i sinteza signalov konechnoi dlitel’nosti” [Optimal subband methods for analysis and synthesis of finite duration signals], Automation and Remote Control, no. 4, pp. 51–66, 2015 (in Russian).

E. G. Zhilyakov, S. P. Belov, I. I. Oleinik, and E. I. Prokhorenko, “Regularization of Inverse Signal Recovery Problems,” HELIX the Scientific Explorer, vol. 9 (2), pp. 4883–4889, 2019.

I. I. Oleynik and A. N. Tsurkan, “Calibration of video surveillance systems using multidimensional information representations,” in Proc. of Materials of the International Conference “Process Management and Scientific Developments” (Birmingham, United Kingdom, May 2, 2020), pp. 260–265, 2020.

Published
2025-04-20
How to Cite
Popov, A. (2025). Analysis of Image Processing Methods in the Context of a Basis for Recognizing Small Objects. Image processing methods for object recognition. Computer Tools in Education, (1), 33-47. https://doi.org/10.32603/2071-2340-2025-1-33-47
Section
Artificial intelligence and machine learning