Randomized Distributed Adaptive Algorithm for a Maximum Flow Problem

  • Николай Владимирович Мальковский SPbSU, St. Petersburg, Russia
Keywords: constraint optimization, gradient descent, distributed algorithms, randomized algorithms, network flow

Abstract

This paper presents an algorithm for solving one of the fundamental optimization problems — maximum flow problem. The algorithm is based on the ideas of arc balancing procedure and projected gradient method. Although the algorithm does not improve asymptotic complexity over existing methods it still possess some usefull properties: natural implementation in distributed systems and convergence to an optimal solution even if network parameters are changing slightly over time. Two versions of the algorithm are considered: randomized and concurrent. Both versions mainain adaptability but randomized version is preferable due to better convergence rate and simpler implementation in distributed systems.

Author Biography

Николай Владимирович Мальковский, SPbSU, St. Petersburg, Russia

Nikolaii V. Malkovskii 

References

[1] A. Goldberg and R. Tarjan, “Efficient maximum flow algorithms” Communications of the ACM, vol. 57, no. 8, 2014, pp. 82–89; doi: 10.1145/2628036
[2] R. Tarjan, J. Ward, B. Zhang, Y. Zhou, and J. Mao, “Balancing applied to maximum network flow problems” in Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol. 4168, Y. Azar T. and Erlebach eds., Springer, 2006, pp. 612–623; doi: 10.1007/11841036_55
[3] E. C. Levitin and B. T. Polyak, “Metody minimizatsii pri nalichii ogranichenii” [Methods of minimization in the presence of constraints], Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, vol. 6, no. 5, 1966, pp. 787–823.
[4] O. N. Granichin, “Poiskovye algoritmy stokhasticheskoi approksimatsii s randomizatsiei na vkhode” [Stochastic approximation search algorithms with randomization at the input], Avtomatika i Telemekhanika, no. 5, 2015, pp. 43-59; doi: 10.1134/S0005117915050033
[5] O. Granichin, V. Volkovich, D. Toledano-Kitai, Randomized algorithms in automatic control and data mining, Springer, 2014.
[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6, 2006, pp. 2508–2530; doi: 10.1109/TIT.2006.874516
[7] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, 2004, pp. 1520–1533; doi: 10.1109/TAC.2004.834113
Published
2016-12-30
How to Cite
Мальковский, Н. В. (2016). Randomized Distributed Adaptive Algorithm for a Maximum Flow Problem. Computer Tools in Education, (5), 46-62. Retrieved from http://cte.eltech.ru/ojs/index.php/kio/article/view/1412
Section
Computer science