Computers as Novel Mathematical Reality. VI. Fermat numbers and their relatives

  • Nikolai Vavilov Saint Petersburg State University, 29, Line 14th, Vasilyevsky Island, 199178, Saint Petersburg, Russia
Keywords: Fermat numbers, generalised Fermat numbers, Proth numbers, Pierpoint numbers, cyclotomy

Abstract

In this part, which constitutes a pendent to the part dedicated to Mersenne numbers, I continue to discuss the fantastic contributions towards the solution o classical problems of number theory achieved over the last decades with the use of computers. Specifically, I address primality testing, factorisations and the search of prime divisors of the numbers of certain special form, primarily Fermat numbers, their friends and relations, such as generalised Fermat numbers, Proth numbers, and the like. Furthermore, we discuss the role of Fermat primes and Pierpoint primes in cyclotomy. 

Author Biography

Nikolai Vavilov, Saint Petersburg State University, 29, Line 14th, Vasilyevsky Island, 199178, Saint Petersburg, Russia

Doctor of Sciences (Phys.-Math.), Professor, Department of Mathematics and
Computer Science, SPbU, nikolai-vavilov@yandex.ru

References

V. Y. Bunyakovsky, “On a new case of divisibility of numbers of the form 2 2 m + 1, reported to the Academy by

Father Pervushin (read at the meeting of the Physics and Mathematics Department on April 4, 1878),” Zapiski Imperatorskoi Akademii Nauk, vol. 31, no. 1, pp. 223–224, 1878 (in Russian).

N. A. Vavilov, “Numerology of square equations,” Algebra i Analiz, vol. 20, no. 5, pp. 9–40, 2008; doi:10.1090/S1061-0022-09-01068-1

N. A. Vavilov, “Computers as novel mathematical reality. I. Personal Account,” Computer tools in education, no. 2, pp. 5–26, 2020 (in Russian); doi: 10.32603/2071-2340-2020-2-5-26

N. A. Vavilov, “Computers as novel mathematical reality. II. Waring Problem,” Computer tools in education, no. 3, pp. 5–55, 2020 (in Russian); doi: 10.32603/2071-2340-2020-3-5-55

N. A. Vavilov, “Computers as novel mathematical reality. III. Mersenne numbers and divisor sums,” Computer tools in education, no. 4, pp. 5–58, 2020 (in Russian); doi: 10.32603/2071-2340-2020-4-5-58

N. A. Vavilov, “Computers as novel mathematical reality. IV. Goldbach Problem,” Computer tools in education, no. 4, pp. 5–71, 2021 (in Russian); doi: 10.32603/2071-2340-2021-4-5-71

N. A. Vavilov, “Computers as novel mathematical reality. V. Easier Waring problem,” Computer tools in education, no. 3, pp. 5–63, 2022 (in Russian); doi: 10.32603/2071-2340-2022-3-5-63

N. A. Vavilov and V. G. Khalin, Zadachi po kursu Matematika i Komp’yuter. Vyp. 1. Arifmetika i teoriya chisel [Exercises for the course “Mathematics and Computers”. Issue 1, Arithmetics and Number Theory], St. Petersburg, Russia: OTsEiM, 2005 (in Russian).

N. A. Vavilov, V. G. Khalin, and A. V. Yurkov, Mathematica dlya nematematika [Mathematica for nonmathematician], Moscow: MCCME, 2021 (in Russian).

B. L. van der Waerden, Science awakening. Egyptian, Babylonian and Greek mathematics, Moscow: GIFML, 1959 (in Russian).

O. N. Vasilenko, “On some properties of Fermat numbers,” Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., no. 5, pp. 56–58, 1998 (in Russian).

A. M. Vershik, “The asymptotic distribution of factorizations of natural numbers into prime divisors,” Sov. Math. Dokl., vol. 34, pp. 57–61, 1987.

N. Wiener, I am mathematician, Izhevsk, Russia: Nelin. Dinam., 2001 (in Russian).

C. F. Gauss, Disquisitiones arithmeticae, I. M. Vinorradov ed., Moscow: Iz-vo AN SSSR, 1959 (in Russian).

C. F. Gauss, “Explanation of the possibility of constructing a seventeenagon,” E. P. Ozhigova ed., Istorikomatematicheskie issledovaniya, vol. 21, pp. 285–291, 1976 (in Russian).

J. L. Heiberg, Natural science and mathematics in classical antiquity, Leningrad, USSR: ONTI, 1936 (in Russian).

S. G. Gindikin, Stories about physicists and mathematicians, Moscow: Nauka, 1981 (in Russian).

J. M. Ziman, Elements of advanced quantum theory, Moscow: Mir, 1971 (in Russian).

G. P. Matvievskaya, E. P. Ozhigova, N. I. Nevskaya, and Yu. Kh. Kopelevich, Unpublished materials of L. Euler on number theory, St Petersburg, Russia: Nauka, 1997 (in Russian).

I. G. Melnikov, “On some questions of number theory in Euler’s correspondence with Goldbach,” Istoriya i metodologiya estestvennykh nauk, vol. 5, pp. 15–30, 1966 (in Russian).

I. G. Melnikov, “Questions of number theory in the works of Fermat and Euler,” Istoriko-matematicheskie issledovaniya, vol. 19, pp. 9–38, 1974 (in Russian).

О. Neugebauer, The exact sciences in antiquity, Moscow: Nauka, 1968 (in Russian).

J. Needham, A history of embryology, Moscow: Inostr. literatura, 1947 (in Russian).

M. M. Postnikov, Galois theory, Moscow: GIFML, 1963 (in Russian).

I. Braginskii ed., Poetry and prose of the Ancient East, BVL, ser. I, vol. 1, Moscow: Khudozhestvennaya literatura, 1973 (in Russian).

V. V Prasolov and Yu. P. Solov’ev, Elliptic functions and algebraic equations, Moscow: Faktorial, 1997 (in Russian).

E. V. Sadovnik, “Testing numbers of the form N = 2kpm − 1 for primality,” Discrete Math. Appl., vol. 16:2, pp. 99–108, 2006; doi:10.1515/156939206777344610

E. V. Sadovnik, “Testing numbers of the form N = 2kpm1 1 p m2 2 ...p mn n − 1 for primality,” Discrete Math. Appl., vol. 18, no. 3, pp. 239–249, 2008; doi:10.1515/DMA.2008.019

S. B. Stechkin, “Lucas’s criterion for the primality of numbers of the form N = h2 n −1,” Math. Notes, vol. 10:3, pp. 578–584, 1971; doi:197110.1007/BF01464716

D. K. Faddeev, Algebra Lectures. Moscow, Nauka, 1984 (in Russian).

P. Fermat, Studies in number theory and diophantine analysis, Moscow, Nauka, 1992 (in Russian).

G. G. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Moscow: In-t Komp’yuternykh Issl., 2002 (in Russian).

N. G. Chebotarev, Galois theory, Leningrad, USSR: ONTI, 1936 (in Russian).

H. G. Zeuthen, History of mathematics in antiquity and the Middle Ages, Leningrad, USSR: GTTI, 1932 (in Russian).

F. Adler, Theorie der geometrischen Konstruktionen, Sammlung Schubert, vol. 52, Leipzig, Germany: G¨oschen,1906 (in German).

F. J. Affolter, “Zur Staudt—Schr¨oter’schen Construction des regul¨aren Vielecks,” Math. Ann., vol. 6, pp. 582–591, 1873 (in German).

R. C. Agarwal and C. S. Burrus, “Fast digital convolution using Fermat transforms,” in Southwest IEEE Conf. Rec., Houston, Texas, pp. 538–543. 1973.

R. C. Agarwal and C. S. Burrus, “Fast convolution using Fermat number transforms with applications to digital filtering,” in IEEE Trans. Acoust. Speech Signal Processing, vol. 22, pp. 87–97, 1974.

A. Aigner, “Uber Primzahlen, nach denen (fast) alle Fermatschen Zahlen quadratische Nichtreste sind,” ¨ Monatsh. Math., vol. 101, no. 2, pp. 85–93, 1986 (in German).

B. Amiot, “Memoire sur les polygones r ˊ eguliers,” ˊ Nouv. Annales de Math., vol. 4, pp. 264–278, 1844 (in French).

R. C. Archibald, “The history of the construction of the regular polygon of seventeen sides,” American M. S. Bull. vol. 22, pp. 239–246, 1916.

R. C. Archibald, “Gauss and the regular polygon of seventeen sides,” Am. Math. Monthly, vol. 27, pp. 323–326, 1920.

J. M. Arnaudies and P. Delezoide, “Nombres ˋ (2, 3)-constructibles,” Adv. Math., vol. 158, no. 2, pp. 169–252, 2001.

S. P. Arya, “Fermat numbers,” Math. Ed., vol. 6, pp. 5–6, 1989.

S. P. Arya, “More about Fermat numbers,” Math. Ed., vol. 7, pp. 139–141, 1990.

S. Asadulla, “A note on Fermat numbers,” J. Natur. Sci. Math., vol. 17, pp. 113–118, 1977.

Z. S. Aygin and K. S. Williams, “Why does a prime p divide a Fermat number?,” Math. Mag., vol. 93, no. 4, pp. 288–294, 2020.

P. Bachmann, Die Lehre von der Kreistheilung und ihre Beziehungen zur Zahlentheorie, Leipzig, Germany: Teubner, 1872 (in German).

D. Bardziahin, “Finding special factors of values of polynomials at integer points,” Int. J. Number Theory, vol. 13, no. 1, pp. 209–228, 2017.

S. Baek, I. Choe, Y. Jung, D. Lee, and J. Seo, “Constructions by ruler and compass, together with a fixed conic,” Bull. Aust. Math. Soc., vol. 88, no. 3, pp. 473–478, 2013.

R. Baille, “New primes of the form k · 2n +1,” Math. Comput., vol. 33, no. 148, pp. 1333–1336, 1979.

R. Baillie, G. Cormack, and H. C. Williams, “The problem of Sierpinski concerning ˊ k ·2n +1,” Math. Comp., vol. 37, no. 155, pp. 229–231, 1981.

R. Baillie and S. S. Wagstaff, “Lucas pseudoprimes,” Math. Comp., vol. 35, no. 152, pp. 1391–1417, 1980.

E. Bainville and B. Geneves, “Constructions using conics,” ˊ Math. Intelligencer, vol. 22, no. 3, pp. 60–72, 2000.

R. Ballinger and W. Keller, Proth Search Page, 1997.

A. Baragar, “Constructions using a compass and twice-notched straightedge,” MAA Month., vol. 109, pp. 151–164, 2002.

C. B. Barker, “Proof that the Mersenne number M167 is composite,” Bull. Amer. Math. Soc., vol. 51, pp. 389–389, 1945.

K. Barner, “Paul Wolfskehl und der Wolfskehl-Preis,” Mitt. Dtsch. Math.-Ver., vol. 5, no. 3, pp. 4–11, 1997 (in German).

Published
2022-12-28
How to Cite
Vavilov, N. (2022). Computers as Novel Mathematical Reality. VI. Fermat numbers and their relatives. Computer Tools in Education, (4), 5-67. https://doi.org/10.32603/2071-2340-2022-4-5-67
Section
Algorithmic mathematics and mathematical modelling