On Solving Multicriteria Decision Making Problems Based on Pairwise Comparisons

  • Nikolai K. Krivulin Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia
  • Temirlan Abildaev Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia
  • Vladlena D. Gorshechnikova Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia
  • Deivid Kapatsa Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia
  • Elizaveta A. Magdich Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia
  • Anastasia A. Mandrikova Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia
Keywords: multicriteria decision making problems, pairwise comparisons, analytical hierarchy process, tropical mathematics.

Abstract

Problems known in the literature are considered for evaluating ratings of alternatives based on pairwise comparisons. To solve the problems, three methods are used, including the traditional method of of analysis of hierarchies by T. Saaty and the method of weighted geometric means, as well as the new method of minimax log-Chebyshev approximation, for which the solution is obtained using the apparatus and methods of tropical (idempotent) mathematics. Comparison of the solutions obtained shows that the use of different methods does not always lead to the same or close results. If the results of different methods differ significantly the choice of one of them for making a decision does not seem entirely justified. On the contrary, the coincidence or similarity of these results can be considered as some additional argument in favor of choosing one of them as a solution close to the optimum.

Author Biographies

Nikolai K. Krivulin, Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia

PhD, professor of Statistical modeling Department Saint Petersburg State University, nkk@math.spbu.ru

Temirlan Abildaev, Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia

Bachelor of mathematics and mechanics, Saint Petersburg State University, jonoth2357@gmail.com

Vladlena D. Gorshechnikova, Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia

Bachelor of mathematics and mechanics, Saint Petersburg State University, st054363@student.spbu.ru

Deivid Kapatsa, Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia

Bachelor of mathematics and mechanics, Saint Petersburg State University, David.Kapatsa@chaminade-stl.org

Elizaveta A. Magdich, Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia

Bachelor of mathematics and mechanics, Saint Petersburg State University, st054381@student.spbu.ru

Anastasia A. Mandrikova, Saint Petersburg State University, 28 Universitetskiy pr., Stary Peterhof, 198504, Saint Petersburg, Russia

Bachelor of mathematics and mechanics, Saint Petersburg State University, st054754@student.spbu.ru

References

V. V. Podinovskii and V. D. Nogin, Pareto-optimal’nye resheniya mnogokriterial’nykh zadach [Pareto-optimal solutions to multicriteria problems], Moscow: Nauka, 1982 (in Russian).

T. Saati, Decision making. Hierarchy analysis method, Moscow: Radio i svyaz’, 1993 (in Russian).

V. D. Nogin, Prinyatie reshenii v mnogokriterial’noi srede: kolichestvennyi podkhod [Decision making in a multicriteria environment: a quantitative approach], Moscow: Fizmatlit, 2002 (in Russian).

E. U. Choo and W. C. Wedley, “A common framework for deriving preference values from pairwise comparison matrices,” Computers Operations Research, vol. 31, no. 6, pp. 893–908, 2004; doi: 10.1016/S0305-0548(03)00042-X

T. L. Saaty and L. G. Vargas, “Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios,” Mathematical Modelling, vol. 5, no. 5, pp. 309–324, 1984; doi: 10.1016/0270-0255(84)90008-3

N. M. Tran, “Pairwise ranking: choice of method can produce arbitrarily different rank order,” Linear Algebra Appl., vol. 438, no. 3, pp. 1012–1024, 2013; doi: 10.1016/j.laa.2012.08.028

T. L. Saaty, “A scaling method for priorities in hierarchical structures,” J. Math. Psych., vol. 15, no. 3, pp. 234–281, 1977; doi: 10.1016/0022-2496(77)90033-5

V. Belton and T. Gear, “On a short-coming of Saaty’s method of analytic hierarchies,” Omega, vol. 11, no. 3, pp. 228–230, 1983; doi: 10.1016/0305-0483(83)90047-6

T. L. Saaty and G. Hu, “Ranking by eigenvector versus other methods in the Analytic Hierarchy Process,” Appl. Math. Letters., vol. 11, no. 4, pp. 121–125; doi: 10.1016/S0893-9659(98)00068-8

T. L. Saaty, “Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP),” J. Syst. Sci. Syst. Eng., vol. 13, no. 1, pp. 1–35, 2004; doi: 10.1007/s11518-006-0151-5

G. Crawford and C. Williams, “A note on the analysis of subjective judgment matrices,” J. Math. Psych., vol. 29, no. 4, pp. 387–405, 1985; doi: 10.1016/0022-2496(85)90002-1

N. K. Krivulin, V. A. Ageev, and I. V. Gladkikh, “Application of methods of tropical optimization for evaluating alternatives based on pairwise comparisons,” Vestnik of St Petersburg University. Applied Mathematics. Computer Science. Control Processes, vol. 13, no. 1, pp. 27–41, 2017 (in Russian); doi: 10.21638/11701/spbu10.2017.103

N. K. Krivulin and V. A. Ageev, “Methods of tropical optimization in multicriteria problems of raiting alternatives from pairwise comparisons,” Vestnik of St Petersburg University. Applied Mathematics. Computer Science. Control Processes, vol. 15, no. 4, pp. 472–488, 2019 (in Russian); doi: 10.21638/11702/spbu10.2019.405

M. T. Chu, “On the optimal consistent approximation to pairwise comparison matrices,” Linear Algebra Appl., vol. 272, no. 1–3, pp. 155–168, 1998; doi: 10.1016/S0024-3795(97)00329-7

N. K. Krivulin and I. V. Gladkikh, “Computation of the consistent pairwise comparison matrix in marketing research by using methods of tropical mathematics,” Vestnik of St Petersburg University. Management, no. 1, pp. 3–43, 2015 (in Russian).

N. K. Krivulin and S. N. Sergeev, “Tropical implementation of the Analytical Hierarchy Process decision method,” Fuzzy Sets and Systems, vol. 377, pp. 31–51; doi: 10.1016/j.fss.2018.10.013

N. K. Krivulin, “Rating alternatives from pairwise comparisons by solving tropical optimization problems,” in Proc. 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 2015, pp. 162–167; doi: 10.1109/FSKD.2015.7381933

N. K. Krivulin, “Using tropical optimization techniques to evaluate alternatives via pairwise comparisons,” in Proc. Proc. 7th SIAM Workshop on Combinatorial Scientific Computing, Philadelphia, PA, USA: SIAM, 2016, pp. 62–72; doi: 10.1137/1.9781611974690.ch7

M. Ehrgott, Multicriteria Optimization, Berlin: Springer, 2005; doi: 10.1007/3-540-27659-9

H. Nakayama, Y. Yun, and M. Yoon, Sequential Approximate Multiobjective Optimization Using Computational Intelligence, Berlin: Springer, 2009; doi: 10.1007/978-3-540-88910-6

N. K. Krivulin, “Methods of tropical optimization in rating alternatives based on pairwise comparisons,” in Operations Research Proceedings 2016. Operations Research Proceedings (GOR (Gesellschaft fur Operations¨ Research e.V.)), Springer, Cham, pp. 85–91, 2018; doi: 10.1007/978-3-319-55702-1_13

F. L. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and Linearity. Wiley Series in Probability and Statistics, Chichester, UK: Wiley, 1993.

V. P. Maslov and V. N. Kolokol’tsov, “Idempotentnyi analiz i ego primenenie v optimal’nom upravlenii” [Idempotent analysis and its application in optimal control], Moscow: Fizmatlit, 1994 (in Russian).

J. S. Golan, Semirings and Affine Equations over Them: Theory and Applications, New York: Springer, 2003; doi:10.1007/978-94-017-0383-3

B. Heidergott, G. J. Olsder, and J. van der Woude, Max Plus at Work. Princeton Series in Applied Mathematics, Princeton, NJ, USA: Princeton Univ. Press, 2006.

N. K. Krivulin, “Metody idempotentnoi algebry v zadachakh modelirovaniya i analiza slozhnykh sistem” [Idempotent algebra methods in modeling and analysis of complex systems], St. Petersburg, Russia: Izdatel’stvo Sankt-Peterburgskogo universiteta, 2009.

Published
2020-06-26
How to Cite
Krivulin, N. K., Abildaev, T., Gorshechnikova, V. D., Kapatsa, D., Magdich, E. A., & Mandrikova, A. A. (2020). On Solving Multicriteria Decision Making Problems Based on Pairwise Comparisons. Computer Tools in Education, (2), 27-58. https://doi.org/10.32603/2071-2340-2020-2-27-58
Section
Algorithmic mathematics and mathematical modelling