Preparation of Skippers Using Software with a Function for Planning and Execution of the Transition
Abstract
This article considers the approach of training skippers based on the usage of software with a function for voyage planning and voyage execution. Due to the fact that the team’s actions on the ship’s bridge may be well systematized, an approach is proposed for building a voyage planner tool using finite state automata. The voyage planner tool can be built as a sequence of steps (wizard) to provide a higher level of organization of the day to day work onboard. This work describes in detail the voyage planning and voyage execution phases. Emphasis is placed on the ship simulation modeling with predefined set of conditions: ship type, ship loading, weather conditions and route. Moreover, the complex problem of optimizing financial costs is examined both at the stage of planning the routes of ships, and at the stage of execution of the transitions in real weather conditions.
References
2. C-Map Integrated Maritime Suite User Manual, 2017.
3. C-Map. URL: https://www.c-map.com (дата обращения: 12.12.2017).
4. Rielly E. Conrad SMP95: Standard Ship Motion Program User Manual, 2005.
5. StormGeo. URL: http://www.stormgeo.com (дата обращения: 12.12.2017).
6. Marorka. URL: http://www.marorka.com (дата обращения: 12.12.2017).
7. Napa. URL: https://www.napa.fi (дата обращения: 12.12.2017).
8. Meteo Group. URL: https://www.meteogroup.com (дата обращения: 12.12.2017).
9. Walther L., Rizvanolli A., Wendebourg M., Jahn C. Modeling and Optimization Algorithms in Ship
Weather Routing // International Journal of e-Navigation and Maritime Economy. 2016. Vol. 4.
P. 31–45.
10. Tan K. C., Lee T. H., Khor E. F. Evolutionary Algorithms for Multi-Objective Optimization: Performance
Assessments and Comparisons // Artificial Intelligence Review archive, 2002. Vol. 17. Issue 4.
P. 251–290.
11. Zitzler E., Laumanns M., Thiele L. // Evolutionary Methods for Design Optimization and Control with
Applications to Industrial Problems, Athens, Greece, International Center for Numerical Methods in
Engineering, 2001. P. 95–100.
12. Deb K., Pratap A., Agarwal S., Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm:
NSGAII // IEEE Transactions on Evolutionary Computation. 2002. Vol. 6. Issue 2. P. 182–197.
13. Srinivas N., Deb K. Multiobjective function optimization using nondominated sorting genetic
algorithms // Evolutionary Computation Journal. 1994. Vol. 2. Issue 3. P. 221–248.
14. Rudolph G. Evolutionary search under partially ordered sets // In Proceedings of the International
NAISO Congress of Information Science Innovations (ISI 2001). P. 818-822. ICSC Academic Press:
Millet/Sliedrecht.
15. Zitzler E., Deb K., Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical
results // Evolutionary computation. 2000. Vol. 8. Issue. P. 173–195.
16. Microsoft Azure Cloud. URL: https://azure.microsoft.com (дата обращения: 12.12.2017).
17. Amazon Web Services. URL: https://aws.amazon.com (дата обращения: 12.12.2017).
This work is licensed under a Creative Commons Attribution 4.0 International License.