An Algorithm for Identifying the Maximal Common Subgraph in Oriented Graphs

  • Zhou Juan Saint Petersburg State University, 7-9, Universitetskaya nab., Saint Petersburg, 199034, Russia
Keywords: graph isomorphism, maximal common oriented subgraph, graph bijection.

Abstract

Graph isomorphism checking is highly significant within both graph theory and its applications, particularly regarding oriented graph isomorphism, where identifying a bijection is an NP-hard problem.

The problem of finding the maximal common subgraph between two oriented graphs represents a specific instance of predicate formula isomorphism, occurring when an elementary conjunction includes only a single binary predicate. Initially, the algorithm was developed to determine the maximal common subformula of two elementary conjunctions. This paper provides pseudocode for algorithms that extract the maximal common subgraph in oriented graphs, accompanied by an illustrative application example.

References

Chen X., Jia S., Xiang Y. A review: Knowledge reasoning over knowledge graph // Expert Systems with Applications, 2020. Т. 141. C. 1–21. doi:10.1016/j.eswa.2019.112948

Bouritsas G. et al. Improving graph neural network expressivity via subgraph isomorphism counting // IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. Т. 45. № 1. С. 657–668. doi: 10.1109/TPAMI.2022.3154319

Zeng X. et al. GNNGL-PPI: multi-category prediction of protein-protein interactions using graph neural networks based on global graphs and local subgraphs // BMC Genomics, 2024. Т. 25. № 1. С. 1–13. doi: 10.1186/s12864-024-10299-x

Wu S. et al. Graph neural networks in recommender systems: a survey // ACM Computing Surveys, 2022. Т. 55. № 5. С. 1–37. doi: 10.1145/3535101

Cheng D. et al. Graph neural network for fraud detection via spatial-temporal attention // IEEE Transactions on Knowledge and Data Engineering, 2020. Т. 34. № 8. С. 3800–3813. doi:10.1109/TKDE.2020.3025588

Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи / пер. с англ. Левнера Е. В. , Фрумкина М. А. М.: Мир, 1982. (Garey M. R., Johnson D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness.)

Косовская Т. М., Косовский Н. Н. Выделение общих свойств объектов для создания логических онтологий // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, 2022. Т. 18. № 1. С. 37–51. doi: 10.21638/11701/spbu10.2022.103

Косовская Т. М., Косовский Н. Н. Полиномиальная эквивалентность задач изоморфизм предикатных формул и изоморфизм графов // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2019. Т. 6 (64). № 3. С. 430–439. doi: 10.21638/11701/spbu01.2019.308

Чжоу Ц., Косовская Т. М. Алгоритм выделения общих свойств объектов, описанных на языке исчисления предикатов с одним предикатным символом // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2024. Т. 11(69). № 4. С. 733–744. doi:10.21638/spbu01.2024.409

Matthes E. Python crash course: A hands-on, project-based introduction to programming, 3rd Edition. San Francisco: no starch press, 2023.

Wu Z. et al. A comprehensive survey on graph neural networks // IEEE Transactions on Neural Networks and Learning Systems, 2021. Т. 32. № 1. С. 4–24. doi:10.1109/tnnls.2020.2978386

Xu K. et al. How powerful are graph neural networks? // arxiv:1810.00826, 2018.

Zheng K. et al. NASMDR: a framework for miRNA-drug resistance prediction using efficient neural architecture search and graph isomorphism networks // Briefings in Bioinformatics, 2022. Т. 23. № 5. С. 1–9. doi: 10.1093/bib/bbac338

Su J. et al. M2DC: A meta-learning framework for generalizable diagnostic classification of major depressive disorder // IEEE Transactions on Medical Imaging. 2024. doi: 10.1109/TMI.2024.3461312

Feng Y. et al. Hypergraph isomorphism computation // IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. Т. 46. № 5. C. 3880–3896. 2024; doi: 10.1109/TPAMI.2024.3353199

Published
2024-12-20
How to Cite
Juan, Z. (2024). An Algorithm for Identifying the Maximal Common Subgraph in Oriented Graphs. Computer Tools in Education, (3). https://doi.org/10.32603/10.32603/2071-2340-2024-3–6
Section
Algorithmic mathematics and mathematical modelling