Прогнозирование успешности обучения в интегрированной образовательной среде с применением инструментов онлайн аналитики

  • Елена Евгеньевна Котова Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина), ул. Профессора Попова, д. 5, корп. 2, 197376, Санкт-Петербург, Россия
Ключевые слова: процесс обучения, методы анализа данных, учебная деятельность, индивидуальные различия, когнитивный потенциал, модель обучающегося, методы прогнозирования

Аннотация

Потребность формирования квалификаций и подготовки студентов к цифровому будущему меняет стратегии преподавания и подходы к процессу обучения в университетах в направлении цифрового проектирования учебного процесса. Расширяемое пространство доступных данных позволяет применять новые методы интеллектуального анализа образовательных данных (Educational data mining, EDM) с целью изучения уникальных типов данных, понимания действий учащихся, прогнозирования академических результатов, улучшения производительности учебного процесса, принятия управленческих решений и адаптации среды обучения.

Целью настоящей работы является создание персональной образовательной среды индивидуального сопровождения учащихся на основе модели когнитивного потенциала. Задача сопровождения процесса обучения состоит в том, чтобы на основе данных, получаемых в ходе процесса обучения, получить информацию о динамике когнитивного роста («роста» уровня знаний) каждого обучающегося.

Подход к прогнозированию успешности обучения на основе когнитивно-познавательной модели важен для понимания продуктивности освоения учебных материалов студентами в информационно-насыщенной среде.

Рассматривается задача классификации учащихся, прогнозирования успешности обучения для улучшения адаптации и настройки процесса обучения. Организация обратной связи в структуре процесса обучения на основе диагностирования индивидуальных различий учащихся позволяет управлять и настраивать сценарии обучения для улучшения индивидуального процесса. Интегрированная среда обучения реализована в веб-среде и объединяет традиционные средства обучения с инновационными цифровыми онлайн-средствами.

Биография автора

Елена Евгеньевна Котова, Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина), ул. Профессора Попова, д. 5, корп. 2, 197376, Санкт-Петербург, Россия

кандидат технических наук, доцент кафедры Автоматики и процессов управления СПбГЭТУ, eekotova@gmail.com

Литература

Was ist Hochschulbildung (im digitalen Zeitalter)? [Online]. Available: https://www.e-teaching.org/community/communityevents/ringvorlesung/was-ist-hochschulbildung-im-digitalen-zeitalter (in German).

EDUCAUSE Horizon Report: 2019 Higher Education Edition. [Online]. Available: https://library.educause.edu/resources/2019/4/2019-horizon-report

2018 European Skills Index Technical report. [Online]. Available: https://skillspanorama.cedefop.europa.eu/en/useful_resources/2018-european-skills-index-technical-report

H. Dumont and D. Istance, “Analysing and designing learning environments for the 21st century,” in The nature of learning: Using research to inspire practice, H. Dumont, D. Istance, and F. Benavides, eds., 2010, pp. 19–34; doi: 10.1787/9789264086487-en

Organisation for Economic Cooperation and Development, “Skills for a digital world,” Background report 2016 Ministerial Meeting on the digital economy, no. 250, 2016; doi: 10.1787/5jlwz83z3wnw-en

G. Carri¸co, “The EU and artificial intelligence: A human-centred perspective,” European View, vol. 17, no. 1, pp. 29–36, 2018; doi: 10.1177/1781685818764821

A. C. Graesser et al, “Challenges of assessing collaborative problem solving,” in Assessment and teaching of 21st century skills, E. Care, P. Griffin, and M. Wilson eds., Springer, Cham, 2018, pp. 75–91; doi: 10.1007/978-3-319-65368-6_5

B. De Wever et al. “Content analysis schemes to analyze transcripts of online asynchronous discussion groups: A review,” Computers & education, vol. 46, no. 1, pp. 6–28, 2006; doi: 10.1016/j.compedu.2005.04.005

Y. Lou, P. C. Abrami, and S. d’Apollonia, “Small group and individual learning with technology: A meta-analysis,” Review of educational research, vol. 71, no. 3, pp. 449–521, 2001; doi: 10.3102/00346543071003449

Learning Analytics Dream, Nightmare or Fairydust? [Online]. Available: http://simon.buckinghamshum.net/2011/12/learning-analytics-ascilite2011-keynote-/

S. B. Shum and R. D. Crick, “Learning dispositions and transferable competencies: pedagogy, modelling and learning analytics,” in Proc. of the 2nd int. conf. on learning analytics and knowledge, 2012, pp. 92–101; doi: 10.1145/2330601.2330629

A. De Liddo et al., “Discourse-centric learning analytics,” in Proc. of the 1st int. conf. on learning analytics and knowledge, 2011, pp. 23–33; doi: 10.1145/2090116.2090120

G. Siemens and R. S. J. d Baker, “Learning analytics and educational data mining: towards communication and collaboration,” in Proc. of the 2nd int. conf. on learning analytics and knowledge, 2012, pp. 252–254; doi: 10.1145/2330601.2330661

N. Sclater, A. Peasgood, and J. Mullan, Learning analytics in higher education. A review of UK and international practice, Jisc, London, 2017. [Online]. Available: https://goo.gl/g0roCB

J. M. Vargas, Modern learning: Quizlet in the social studies classroom, Diss., Wichita State University, KS, 2011.

V. Aleven, “Help seeking and intelligent tutoring systems: Theoretical perspectives and a step towards theoretical integration,” in International handbook of metacognition and learning technologies, R. Azevedo and V. Aleven Eds, New York: Springer, 2013, pp. 311–335; doi: 10.1007/978-1-4419-5546-3_21

V. Aleven et al., “Instruction based on adaptive learning technologies,” Handbook of research on learning and instruction, pp. 522–560, 2016.

Learning Analytics. [Online]. Available: https://www.e-teaching.org/didaktik/qualitaet/learning_analytics

S. B. Shum, Learning analytics policy brief, UNESCO Institute for Information Technology in Education, 2012.

R. Ferguson, “Learning analytics: drivers, developments and challenges,” International Journal of Technology Enhanced Learning, vol. 4, no. 5/6, pp. 304–317, 2012; doi: 10.1504/IJTEL.2012.051816

A. C. Graesser et al. “ElectronixTutor: an intelligent tutoring system with multiple learning resources for electronics,” International journal of STEM education, vol. 5, no. 1, pp. 15, 2018; doi: 10.1186/s40594-018-0110-y

D. H. Imaev and E. E. Kotova, Modelirovanie i imitatsiya protsessov obucheniya s razdeleniem didakticheskikh resursov. Dinamicheskii podkhod [Modeling and simulation of learning processes with separation didactic resources. Dynamic approach], Saint Petersburg, Russia: SPbGETU LETI, 2014 (in Russian).

Spetsproekt AIF.RU. Uchit’sya v Internete. Chto nuzhno znat’ onlain-obrazovanii. [Online]. Available: http://education.aif.ru/

E. B. Luchenkova and V. A. Shershneva, “Vozmozhnosti organizatsii smeshannogo obucheniya matematike studentov inzhenernykh napravlenii podgotovki” [Blended Learning Opportunities math students engineering training], Perspektivy nauki i obrazovaniya, no. 4, pp. 66–71, 2018.

M. Lapchik et al., “Ot korporativnoi komp’yuternoi seti k integrirovannoi informatsionnoobrazovatel’noi srede” [From a corporate computer network to an integrated educational environment], Vysshee obrazovanie v Rossii, no. 6, pp. 93–99, 2008.

N. A. Dmitrievskaya, “Integrirovannaya intellektual’naya sreda nepreryvnogo razvitiya kompetentsii” [Integrated Intelligent Continuous Development Environment competencies], Otkrytoe obrazovanie, no. 3, pp. 4–8, 2011.

Informatsionnye i kommunikatsionnye tekhnologii v obrazovanii [Information and communication technologies in education], B. Dendeva ed., Moscow: IITO YuNESKO, 2013.

Stil’ cheloveka. Psikhologicheskii analiz [Man style. Psychological analysis], A. V. Libina ed., Moscow: Smysl, 1998.

M. A. Kholodnaya, Kognitivnye stili: O prirode individual’nogo uma. Uchebnoe posobie [Cognitive styles: On the nature of the individual mind. Tutorial], Moscow: PER SE, 2002.

L. L. Thurstone, A factorial study of perception, Chicago, IL: University of Chicago Press, 1944.

J. Kagan, “Reflection-impulsivity: The generality and dynamics of conceptual tempo,” Journal of abnormal psychology, vol. 71, no. 1, pp. 17–24, 1966; doi: 10.1037/h0022886

J. R. Stroop, “Studies of interference in serial verbal reactions,” J. of Exper. Psychology, vol. 18, pp. 643–662, 1935; doi: 10.1037/h0054651

Kognitivnye stili. Tezisy nauchno-prakticheskogo seminara [Cognitive styles. Theses of the scientific and practical seminar], V. Kolgi ed., Tallinn, Estonia: Tallinskii ped. Institut im. E. Vil’de, 1986.

V. A. Averin, N. N. Kireeva, and E. E. Kotova, Intellektual’no-stilevaya organizatsiya cheloveka [Intellectual-style organization of man], Saint Petersburg, Russia: Publishing center PFSPbSMU, 2014 (in Russian).

E. E. Kotova and P. I. Paderno, “Ekspress-diagnostika kognitivno-stilevogo potentsiala obuchayushchikhsya v integrirovannoi obrazovatel’noi srede,” Educational Technologies and Society, vol. 18, no. 1, pp. 561–576, 2015 (in Russian).

E. E. Kotova, Modeli i metody intellektual’noi podderzhki adaptivnogo upravleniya protsessom obucheniya, Saint Petersburg, Russia: Pechatnyi tsekh, 2019 (in Russian).

E. E. Kotova and A. S. Pisarev, “The problem of classification of use of students intellectual data analysis methods,” Proceedings of Saint Petersburg Electrotechnical University, no. 4, pp. 32–42, 2019 (in Russian).

S. Benomrane, Z. Sellami, and M. B. Ayed, “An ontologist feedback driven ontology evolution with an adaptive multi-agent system,” Advanced Engineering Informatics, vol. 30, no. 3, pp. 337–353, 2016; doi: 10.1016/j.aei.2016.05.002

E. E. Kotova and A. S. Pisarev, “Automated prediction of student learning outcomes,” in Proceedings of Saint Petersburg Electrotechnical University, no. 5, 2019, pp. 31–39 (in Russian).

C. Snijders, U. Matzat, and U. D. Reips, “‘Big Data’: big gaps of knowledge in the field of internet science,” International Journal of Internet Science, vol. 7, no. 1, pp. 1–5, 2012.

A. K. C. Wong and Y. Wang, “Pattern discovery: a data driven approach to deci-sion support,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 33, no. 1, pp. 114–124, 2003; doi: 10.1109/TSMCC.2003.809869

Baza dannykh kognitivno-stilevogo potentsiala studentov AnalyticSYSTEMS-hDS (StudCSP-DataSet), Certificate of state registration of the database №2019621974, Date of state registration in the Database Register 30.10.2019.

V. Donche et al., “Differential use of learning strategies in first-year higher education: The impact of personality, academic motivation, and teaching strategies,” British Journal of Educational Psychology, vol. 83, pp. 238–251, 2013; doi: 10.1111/bjep.12016

A. A. Vavilov, “Strukturnyi i parametricheskii sintez slozhnykh sistem upravleniya” [Structural and parametric synthesis of complex control systems], Saint Petersburg, Russia: LETI, 1979 (in Russian).

A. A. Vavilov et al., “Modellierung Analyse und evolutionaere Synthese komplizierter Steuerungsysteme,” Modellierung und Simulation von Produktionsprozessen, Berlin: VEB Verlag Technik, pp. 14–87, 1983.

E. E. Kotova and A. S. Pisarev, “Analiz dannykh v obrazovatel’noi srede s primeneniem intellektual’nykh agentov” [Data analysis in an educational environment using intelligent agents], in Proc. 7th All-Russia Scientific Conference ’Fuzzy Systems, Soft Computing and Intelligent Technologies’ (FSSCIT-2017), vol. 2, 2017, pp. 108–117 (in Russian).

P. Strecht, L. Cruz, C. Soares, and J. Mendes-Moreira, “A Comparative Study of Classification and

Regression Algorithms for Modelling Students’ Academic Performance,” in Proceedings 8th International Conference on Educational Data Mining, Madrid, Spain, 2015, pp. 392–395.

K. R. Koedinger, E. A. McLaughlin, and J. C. Stamper, “Automated Student Model Improvement,” in Proc. International Educational Data Mining Society, Chania, Greece, 2012, pp. 17–24.

J. D. Gobert, M. Auer, A. Azad, A. Edwards, and T. L. de Jong, “Real-Time Scaffolding of Students’ Online Data Interpretation During Inquiry with Inq-ITS Using Educational Data Mining,” Cyber-physical laboratories in engineering and science education, Springer, Cham, pp. 191–217, 2018; doi: 10.1007/978-3-319-76935-6_8

J. W. Pellegrino, N. Chudowsky, and R. Glaser, Knowing what students know: The science and design of educational assessment, Washington: National Academy Press, 2001.

M. Vahdat, L. Oneto, D. Anguita, M. Funk, and G. W. M. Rauterberg, “Educational process mining (EPM): a learning analytics data set,” UCI Machine Learning Repository. [Online]. Available: https: //research.tue.nl/en/datasets/educational-process-mining-epm-a-learning-analytics-data-set

Learning Analytics: Avoiding Failure. [Online]. Available: https://er.educause.edu/articles/2017/7/learning-analytics-avoiding-failure

A. Bogar´ın, R. Cerezo, and C. Romero, “A survey on educational process mining,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 1–17, 2018; doi: 10.1002/widm.1230

Programmnyi kompleks analiza informatsionnykh resursov OntoMASTER-Resurs, Certificate of state registration of the database №2018611107, Date of state registration in the Database Register 24.01.2018.

Опубликован
2019-12-28
Как цитировать
Котова, Е. Е. (2019). Прогнозирование успешности обучения в интегрированной образовательной среде с применением инструментов онлайн аналитики. Компьютерные инструменты в образовании, (4), 55-80. https://doi.org/10.32603/2071-2340-2019-4-55-80
Выпуск
Раздел
Информационные системы