Big data usage in telecommunications

  • Артемий Александрович Пономарёв SPbSU, St. Petersburg, Russia
Keywords: data, telecommnications, churn, support vector machines, neural networks

Abstract

The article observes general questions of big data usage in practice in commercial activities of companies. The author makes an accent on the problems that can be solved in the telecommunications with the help of big data. He analyzes clients’ characteristics that help to judge about their potential churn rate. The author identifies clusters, for which the best prediction results were received.

Author Biography

Артемий Александрович Пономарёв, SPbSU, St. Petersburg, Russia

Ponomarev A. A.

References

1. McKinsey Global Institute. Big data: The next frontier for innovation, competition, and productivity, June 2011 // http://www.slideshare.net/blueeyepathrec/
mckinsey-global-institute-big-data-the-next-frontier-for-innovation-competition-and-productivity (дата обращения 27.08.2015).
2. Slon Magazine — онлайн-журнал об экономике и политике. URL: http://slon.ru/specials/data-economics/articles/target/ (дата обращения 06.08.2015)
3. Customer churn prediction in telecommunications. URL: http://www.sciencedirect.com/science/article/pii/S0957417411011353 (дата обращения: 22.05.2015).
4. V Umayaparvathi and K Iyakutti. Applications of data mining techniques in telecom churn prediction.//International Journal of Computer Applications, 2012. № 42(20). С. 5–9.
5. Chih-Ping Wei and I-Tang Chiu. Turning telecommunications call details to churn prediction: a data mining approach // Expert systems with applications, 2002. № 23(2). P. 103–112,
6. Yaya Xie, Xiu Li, EWT Ngai, and Weiyun Ying. Customer churn prediction using improved balanced random forests // Expert Systems with Applications, 2009. № 36(3). P. 5445–5449.
Published
2015-08-30
How to Cite
Пономарёв, А. А. (2015). Big data usage in telecommunications. Computer Tools in Education, (4), 3-8. Retrieved from http://cte.eltech.ru/ojs/index.php/kio/article/view/1457
Section
Software Engineering