Swarm Control of Dynamic Objects Based on Multi-agent Technologies
Keywords:
multi-agent technologies, swarm control, swarm intelligence, local voting algorithm, self-organization, adaptive systems
Abstract
In this paper we study the possibility of multi-agent systems application to the problem of swarm control. We describe the key features of swarm control and adaptive control strategy under uncertain conditions based on local voting algorithm. We also propose a consensus-based algorithm to control a swarm of dynamic objects.
References
1. Rzevski G., Skobelev P. Managing Complexity. WIT Press, 2014.
2. Li W. Stability analysis of swarm with general topology // IEEE Trans. Syst. Man. Cybern. B. 2008. Vol. 38. No. 4. P. 1084–1097.
3. Tanner H.G., Jadbabaie A., Pappas G. J. Flocking in fixed and switching networks // IEEE Trans. Autom. Contr. 2007. Vol. 52. No. 5. P. 863–868.
4. Бендерская Е.Н., Граничин О.Н., Кияев В.И. Мультиагентный подход в вычислительных технологиях: новые грани параллелизма и суперкомпьютинг. // Сборник научных статей 8-й Международной научной конференции «Информационные технологии в бизнесе». СПб, издво «Инфо-да»: 7–13, 2013.
5. Beni G., Wang J. Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, P. 26–30, 1989.
6. Huang M. Stochastic approximation for consensus: a new approach via ergodic backward products. IEEE Transactions on Automatic Control, 57(12): 2994—3008, 2012.
7. Амелина Н.О., Фрадков А.Л. Приближенный консенсус в стохастической динамической сети с неполной информацией и задержками в измерениях. Автоматика и телемеханика, 2012. № 11. С. 6–29.
8. Amelina N., Fradkov A., Jiang Y., Vergados D.J. Approximate Consensus in Stochastic Networks with Application to Load Balancing // IEEE Transactions on Information Theory, April 2015, Vol. 61, Issue 4, pp. 1739–1752.
9. Амелина Н.О., Иванский Ю.В. Задача достижения дифференцированного консенсуса при стоимостных ограничениях // Вестник СПбГУ. Сер. 1: Математика. Механика. Астрономия, 2015. Т. 2(60). Вып. 4. C. 3–14.
10. Ivanskiy, Y., Amelina N., Granichin O., Granichina O., Jiang Y. Optimal step-size of a local voting protocol for differentiated consensuses achievement in a stochastic network with cost constraints // In: Proc. of the 2015 IEEE Conference on Control Applications, September 21-23, 2015, Sydney, Australia, pp. 1367–1372.
11. Granichin O., Amelina N. Simultaneous Perturbation Stochastic Approximation for Tracking under Unknown but Bounded Disturbances // IEEE Transactions on Automatic Control, vol. 60, issue 6, June 2015, pp. 1653–1658.
12. Amelina N., Erofeeva V., Granichin O., Malkovskii N. Simultaneous perturbation stochastic approximation in decentralized load balancing problem // In: Proc. of 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, June 24–26, 2015, Saint Petersburg, Russia. P. 946-951. (IFAC Proceedings Volumes (IFAC-PapersOnline) Volume 48, Issue 11).
2. Li W. Stability analysis of swarm with general topology // IEEE Trans. Syst. Man. Cybern. B. 2008. Vol. 38. No. 4. P. 1084–1097.
3. Tanner H.G., Jadbabaie A., Pappas G. J. Flocking in fixed and switching networks // IEEE Trans. Autom. Contr. 2007. Vol. 52. No. 5. P. 863–868.
4. Бендерская Е.Н., Граничин О.Н., Кияев В.И. Мультиагентный подход в вычислительных технологиях: новые грани параллелизма и суперкомпьютинг. // Сборник научных статей 8-й Международной научной конференции «Информационные технологии в бизнесе». СПб, издво «Инфо-да»: 7–13, 2013.
5. Beni G., Wang J. Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, P. 26–30, 1989.
6. Huang M. Stochastic approximation for consensus: a new approach via ergodic backward products. IEEE Transactions on Automatic Control, 57(12): 2994—3008, 2012.
7. Амелина Н.О., Фрадков А.Л. Приближенный консенсус в стохастической динамической сети с неполной информацией и задержками в измерениях. Автоматика и телемеханика, 2012. № 11. С. 6–29.
8. Amelina N., Fradkov A., Jiang Y., Vergados D.J. Approximate Consensus in Stochastic Networks with Application to Load Balancing // IEEE Transactions on Information Theory, April 2015, Vol. 61, Issue 4, pp. 1739–1752.
9. Амелина Н.О., Иванский Ю.В. Задача достижения дифференцированного консенсуса при стоимостных ограничениях // Вестник СПбГУ. Сер. 1: Математика. Механика. Астрономия, 2015. Т. 2(60). Вып. 4. C. 3–14.
10. Ivanskiy, Y., Amelina N., Granichin O., Granichina O., Jiang Y. Optimal step-size of a local voting protocol for differentiated consensuses achievement in a stochastic network with cost constraints // In: Proc. of the 2015 IEEE Conference on Control Applications, September 21-23, 2015, Sydney, Australia, pp. 1367–1372.
11. Granichin O., Amelina N. Simultaneous Perturbation Stochastic Approximation for Tracking under Unknown but Bounded Disturbances // IEEE Transactions on Automatic Control, vol. 60, issue 6, June 2015, pp. 1653–1658.
12. Amelina N., Erofeeva V., Granichin O., Malkovskii N. Simultaneous perturbation stochastic approximation in decentralized load balancing problem // In: Proc. of 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, June 24–26, 2015, Saint Petersburg, Russia. P. 946-951. (IFAC Proceedings Volumes (IFAC-PapersOnline) Volume 48, Issue 11).
Published
2015-12-30
How to Cite
Ерофеева, В. А., Иванский, Ю. В., & Кияев, В. И. (2015). Swarm Control of Dynamic Objects Based on Multi-agent Technologies. Computer Tools in Education, (6), 34-42. Retrieved from http://cte.eltech.ru/ojs/index.php/kio/article/view/1449
Issue
Section
Informational systems
This work is licensed under a Creative Commons Attribution 4.0 International License.