Several Directions of Computer-Aided Investigations in Combinatorics and Geometry

  • Андрей Михайлович Райгородский MIPT (SU), Mosсow, Russia
Keywords: distance graph, graph of diameters, Ramsey number, chromatic number, Borsuk’s problem

Abstract

Andrey M. Raigorodskiy: In the paper we present some classical problems of combinatorics, which admit computer-aided solutions. Among these problems, we have Borsuk’s problem on partitioning sets into parts of smaller diameter and problems of Ramsey theory.

Author Biography

Андрей Михайлович Райгородский, MIPT (SU), Mosсow, Russia

Laboratory of advanced combinatorics and network applications: department of discrete mathematics; mechanics and mathematics faculty, department of mathematical statistics and random processes MIPT (SU)

References

[1] A. M. Raigorodskii, Problema Borsuka [Borsuk partition problem], Moscow, Russia: MCCME, 2015 (in Russian).
[2] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in Discrete Geometry and Algebraic Combinatorics (Contemporary Mathematics), vol. 625, AMS, 2014, pp. 93–109; doi: 10.1090/conm/625
[3] A. M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters,” in Thirty Essays on Geometric Graph Theory, J. Pach ed., Springer, 2013, pp. 429–460; doi: 10.1007/978-1-4614-0110-0_23
[4] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem,” in London Mathematical Society Lecture Note Series, vol. 347, Cambridge University Press, 2007, pp. 202–248.
[5] A. M. Raigorodskii, “The Borsuk partition problem: the seventieth anniversary,” Mathematical Intelligencer, vol. 26, no. 3, pp. 4‒12, 2004; doi:10.1007/BF02986745
[6] A. M. Raigorodskii, “Vokrug gipotezy Borsuka” [Around Borsuk’s hypothesis], Contemporary Mathematics. Fundamental Directions, vol. 23 Geometry and Mechanics, pp. 147–164, 2007 (in Russian).
[7] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv” [Borsuk's problem and the chromatic numbers of some metric spaces], RUSS MATH SURV, vol. 56, no. 1, pp. 107–146, 2001 (in Russian); doi:10.1070/RM2001v056n01ABEH000358
[8] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike [The linear algebraic method in combinatorics], 2nd ed. Moscow, Russia: MCCME, 2015 (in Russian).
[9] V. G. Boltyanskii and I. Ts. Gokhberg, Teoremy i zadachi kombinatornoi geometrii [Theorems and problems of combinatorial geometry], Moscow, Russia: Nauka, 1965.
[10] P. Brass, W. Moser and J. Pach, Research problems in discrete geometry, NY: Springer, 2005.
[11] V. G. Boltyanski, H. Martini, and P. S. Soltan, Excursions into combinatorial geometry. Universitext, Berlin: Springer, 1997.
[12] G. M. Ziegler, “Coloring Hamming graphs, optimal binary codes, and the 0/1 ‒ Borsuk problem in low dimensions” in Computational Discrete Mathematics (Lecture Notes in Computer Science), vol. 2122, 2001, pp. 159–171.
[13] V. B. Goldshteyn, “O problemakh Borsuka i Gryunbauma dlya (0,1)- i (¡1,0,1)-mnogogrannikov v prostranstvakh maloi razmernosti” [Borsuk's and Grunbaum’s problems for (0, 1)- and (¡1, 0, 1)-polyhedrons in low dimensions], Ph.D. dissertation, CC RAS, Moscow, Russia, 2013 (in Russian).
[14] A. M. Raigorodskii, Modeli sluchainykh grafov [The models of random graphs], 2nd ed. Moscow, Russia: MCCME, 2016 (in Russian).
[15] A. M. Raigorodskii, Veroyatnost' i algebra v kombinatorike [The probability and algebra in combinatorics], 3rd ed. Moscow, Russia: MCCME, 2016 (in Russian).
[16] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, 2nd ed. NY: John Wily and Sons, 1990.
[17] S. Radziszowski, “Small Ramsey Numbers,” Electronic Journal of Cominatorics, Revision #14, Dynamic Survey #DS1: Jan 12, 2014.
[18] A. M. Raigorodskii, Khromaticheskie chisla [Chromatic numbers], 2nd ed. Moscow, Russia: MCCME, 2016 (in Russian).
[19] M. V. Titova, “Kombinatornye i veroyatnostnye metody v zadachakh o geometricheskikh chislakh Ramseya” [Combinatorial and probabilistic methods in problems of geometric Ramsey Numbers], Ph.D. dissertation, MSU, Moscow, Russia, 2013 (in Russian).
[20] N. Alon and A. Kupavskii, “Two notions of unit distance graphs”, Journal of Combinatorial Theory, Series A, vol. 125, pp. 1–17, 2014; doi: 10.1016/j.jcta.2014.02.006.
Published
2017-06-03
How to Cite
Райгородский, А. М. (2017). Several Directions of Computer-Aided Investigations in Combinatorics and Geometry. Computer Tools in Education, (3), 25-31. Retrieved from http://cte.eltech.ru/ojs/index.php/kio/article/view/1399
Section
Unsolved Problems for Young Scientists