Computer tools in education, 2025 № 1: 27–32 http://cte.eltech.ru doi:10.32603/2071-2340-2025-1-27-32

UNIFIED CONSTRUCTIONS OF THE REGULAR HEPTAGON AND TRISKAIDECAGON

Ruhland H., MSc, Independent Researcher, 🖂 helmut.ruhland50@web.de

Abstract

Constructions of regular heptagon and triskaidecagon by trisection of an angle are well known. An elegant construction of the heptagon by S. Adlaj shows a 3-fold symmetry related to a Galois group. Based on the latter construction, in this article one more for the heptagon and two more for the triskaidecagon are presented, all using angle trisection.

Keywords: geometric construction, trisection, heptagon, triskaidecagon, tridecagon.

Citation: H. Ruhland, "Unified constructions of the regular Heptagon and Triskaidecagon", *Computer tools in education*, no. 1, pp. 27–32, 2025 (in Russian); doi:10.32603/2071-2340-2025-1-27-32

1. INTRODUCTION

In [1] A. Gleason gave constructions of a regular heptagon and triskaidecagon using only square roots and the trisection of angles. Later S. Adlaj [2] presented a very elegant construction of the heptagon, that shows the action of a cyclic subgroup of order 3 in the related Galois group on the 3 constructed vertices.

In this article I present 3 new unified constructions of the 2 regular polygons by trisection, unified means here *all* based on S. Adlaj's geometric construction. They all use angle trisection.

In section 2 I repeat the construction in [2] and show one more for the heptagon. In section 3 2 constructions for the trikaidecagon are shown.

2. CONSTRUCTIONS OF THE HEPTAGON

2.1. The first construction, type I: S. Adlaj's from [2]

Let $\varepsilon_k = e^{2\pi i/3k} = ((-1 + \sqrt{3}i)/2)^k$, k = 0, 1, 2 a third root of unity. Define the 3 third roots ζ_k , k = 0, 1, 2:

$$\zeta_k = \epsilon_k \sqrt[3]{\zeta}, \qquad \zeta = \frac{1 - 3\sqrt{3}i}{2\sqrt{7}}.$$
(1)

Determining the third root of ζ is a equivalent to a trisection because $|\zeta| = 1$. The angle to trisect is $\theta = -\arctan(3\sqrt{3}) \approx -79.1066^{\circ}$

Take as radii of the 2 grey, concentric circles in figure 1:

$$R_1, R_2 = \sqrt{(7 \pm \sqrt{21})/18}.$$
(2)

Form three vertices of the heptagon, the three red, green, blue parallelograms in figure 1 realize the following complex additions:

$$V_{0} = R_{1}\varepsilon_{0} + R_{2}\zeta_{1}, \quad V_{1} = R_{1}\varepsilon_{1} + R_{2}\zeta_{0}, \quad V_{2} = R_{1}\varepsilon_{2} + R_{2}\zeta_{2}.^{1}$$
(3)

Figure 1. A scan of the heptagon construction in [2] with the denomination of vertices added by the author of this article. The vertices ε_k , ζ_k do not have unit distance to 0, instead they should have been denominated $\varepsilon_k R_1$, $\zeta_k R_2$

The 3 constructed vertices V_0 , V_1 , V_2 represent the quadratic residues $PR_2 = \{1, 2, 4\}$ modulo 7. The triangle built by these 3 vertices has 3 different side lengths and so no symmetry. The cyclic permutation $C_3 : \zeta_k \rightarrow \zeta_{k+1}$ of order 3, subscripts modulo 3, acts on these 3 vertices.

2.2. The second construction, Type II

Now the angle to trisect is $\theta = 0 = 0^{\circ}$. Only a square root is necesary to get $\theta/3 = 0^{\circ}$, 120° , 240° . Set $R_1 = 1$ and R_2 equals one of the six real roots r_k , k = 0, ..., 5 of the palindromic, sextic polynomial $P = r^6 + 6r^5 - 6r^4 - 29r^3 - 6r^2 - 6r + 1$. Because P is palindromic, with every root r, the inverse is a root too. The 6 roots can be constructed by square roots and solving a cubic, because with $Q = (s^3 + 6s^2 - 9s - 41)$ and s = r + 1/r, $P = Q(s)r^3$. These 6 roots can also be expressed by the ζ_k gotten by the trisection 1:

ese 6 roots can also be expressed by the
$$\zeta_k$$
 gotten by the trisection 1:

$$s_k = -2 + \sqrt{7} \left(\zeta_k + \overline{\zeta_k} \right),\tag{4}$$

$$r_k, r_{k+3} = \frac{s_k \pm \sqrt{s_k^2 - 4}}{2}, \qquad s_k \text{ a root of } Q, \qquad k = 0, 1, 2.$$
 (5)

¹There is no typing error here, in V_0, V_1 the ε and ζ subscripts are different

The vertices of the heptagon are given by 3. Hint: a negative R_2 in this geometric construction means: a vector in the parallelogram has to be taken negative.

In contrary to the previous construction, the triangle built by the 3 constructed vertices V_0 , V_1 , V_2 is now an *isosceles* triangle with a reflection symmetry.

 $C_3: \zeta_k \rightarrow \zeta_{k+1}$ acts now on the 6 radii r_k and so on the 6 isosceles triangles. Up to scaling and rotation are only 3 different triangles.

2.3. The third construction, but nothing new, is of type II too

Now the angle to trisect is $\theta = \pi = 180^{\circ}$. Only a square root is necessary to get $\theta/3 = 60^{\circ}, 180^{\circ}, 300^{\circ}$.

Set $R_1 = 1$ and R_2 equals the *negative* of one of the six real roots r_k of the second construction in 2.2.

Because a negative radius R_2 is equivalent to a positive radius and a rotation by π of the triangle inscribed in this circle: this construction is equivalent to the previous subsection 2.2.

3. CONSTRUCTIONS OF THE TRISKAIDECAGON

3.1. The first construction, type I

Let $\varepsilon_k = e^{2\pi i/3k} = ((-1 + \sqrt{3}i)/2)^k$, k = 0, 1, 2 a third root of unity. Define the 3 third roots ζ_k , k = 0, 1, 2:

$$\zeta_k^{\pm} = \varepsilon_k \sqrt[3]{\zeta^{\pm}}, \qquad \zeta^{\pm} = \frac{\sqrt{26 \pm 5\sqrt{13}} - \sqrt{26 \mp 5\sqrt{13}}i}{2\sqrt{13}}.$$
 (6)

Determining the third root of ζ^{\pm} is a equivalent to a trisection because $|\zeta^{\pm}| = 1$. The 2 corresponding 2 angles to trisect are:

$$\theta^{\pm} = -\arctan\left(\frac{26\mp 5\sqrt{13}}{3\sqrt{3}\sqrt{13}}\right).$$
(7)

Take as radii of the 2 grey, concentric circles and angle to trisect, in figure 1:

$$R_1, R_2 = \sqrt{\frac{\sqrt{13 + \sqrt{13} \pm \sqrt{5 + \sqrt{13}}}}{2\sqrt{2}}}, \quad R_1 R_2 = 1 \quad \theta^+ \approx -23.0510^\circ.$$
(8)

The 3 constructed vertices V_0 , V_1 , V_2 , see 3, represent the now quartic residues $PR_4 = \{1, 3, 9\}$ modulo 13. Using $-\theta^+/3$ the vertices represent $4PR_4 = \{4, 10, 12\}$. The triangle built by these 3 vertices has 3 different side lengths.

The cyclic permutation $C_3: \zeta_k \to \zeta_{k+1}$ of order 3, subscripts modulo 3, acts on these 3 vertices.

To get the vertices belonging to the 2 remaing multiplicative cosets of quartic residues $2PR_4 = \{2, 5, 6\}$ and $8PR_4 = \{7, 8, 11\}$, the following 2 radii and angle to trisect have to be used:

$$R_1, R_2 = \sqrt{\frac{\sqrt{13 - \sqrt{13} \pm \sqrt{5 - \sqrt{13}}}}{2\sqrt{2}}}, \qquad R_1 R_2 = 1, \quad \theta^- \approx -66.9489^\circ.$$
(9)

ALGORITHMIC MATHEMATIC AND MATHEMATICAL MODELING

3.2. The second construction, Type II

Now the angle to trisect is $\theta = 0 = 0^{\circ}$. Only a square root is necesary to get $\theta/3 = 0^{\circ}$, 120° , 240° . Set $R_1 = 1$ and R_2 equals one of the 12 real roots r_k , k = 0, 1, ..., 11 of the palindromic, degree 12 polynomial $P = r^{12} + 12r^{11} - 12r^{10} - 274r^9 - 441r^8 + 441r^7 + 1275r^6 + 441r^5 - 441r^4 - 274r^3 - 12r^2 + 12r + 1$. Because P is palindromic, with every root r, the inverse is a root too. The 12 roots can be constructed by square roots and solving a cubic, because with $Q = (s^6 + 12s^5 - 18s^4 - 334s^3 - 384s^2 + 1323s + 2131)$ and s = r + 1/r, $P = Q(s)r^6$. The sectic Q factorizes in $\mathbb{Q}(\sqrt{13})$ as product of $R = s^3 + 3(2 + \sqrt{13})s^2 + 21(3 + 1\sqrt{13})/2s + (15 + 107\sqrt{13})/2)$ and its $\mathbb{Q}(\sqrt{13})$ -conjugate \overline{R} .

These 12 roots can be expressed by the ζ_k^{\pm} gotten by the trisection 6:

$$s_k^{\pm} = -(2 \pm \sqrt{13}) + \sqrt{13 \pm \sqrt{13}} \, (\zeta_k^{\pm} + \overline{\zeta_k^{\pm}}), \tag{10}$$

$$r_k, r_{k+3} = \frac{s_k^+ \pm \sqrt{(s_k^+)^2 - 4}}{2}, \qquad s_k^+ \text{ a root of } R, \qquad k = 0, 1, 2, \tag{11}$$

$$r_{k+6}, r_{k+9} = \frac{s_k^- \pm \sqrt{(s_k^-)^2 - 4}}{2}, \qquad s_k^- \text{ a root of } \overline{R}, \qquad k = 0, 1, 2.$$
 (12)

The conjugation on the rhs of s_k^{\pm} is now a \mathbb{C} -conjugation.

The vertices of the trikaidecagon are also given by 3. Hint: a negative R_2 in this geometric construction means: a vector in the parallelogram has to be taken negative.

In contrary to the previous construction, the triangle built by the 3 constructed vertices V_0 , V_1 , V_2 is now an *isosceles* triangle with a reflection symmetry.

 $C_3: \zeta_k \to \zeta_{k+1}$ acts now on the 12 radii r_k and so on the 12 isosceles triangles. Up to scaling and rotation are only 6 different triangles.

3.3. The third construction, but nothing new, is of type II too

Now the angle to trisect is $\theta = \pi = 180^{\circ}$. Only a square root is necessary to get $\theta/3 = 60^{\circ}, 180^{\circ}, 300^{\circ}$.

Set $R_1 = 1$ and R_2 equals the *negative* of one of the 12 real roots r_k of the second construction in 3.2.

Because a negative radius R_2 is equivalent to a positive radius and a rotation of the triangle inscribed in this circle: this construction is equivalent to the previous subsection 3.2.

4. CONSTRUCTIONS OF THE PENTAGON

4.1. The first construction, no type I

A type I construction does not exist. Every triangle built by vertices in a regular pentagon is an isoceles triangle. A triangle with 3 different side lengths for type I does not exist.

4.2. The second construction, Type II

Now the angle to trisect is $\theta = 0 = 0^{\circ}$. Only a square root is necessary to get $\theta/3 = 0^{\circ}$, 120°, 240°. Set $R_1 = 1$ and R_2 equals one of the four real roots r_k , k = 0, ..., 3 of the palindromic, quartic polynomial $P = r^4 - r^3 - 9r^2 - r + 1$. Because P is palindromic, with every root r, the inverse is a root too. The 4 roots can be constructed by square roots, because with $Q = s^2 - s - 11$ and s = r + 1/r, $P = Q(s) r^2$. No trisection is needed.

$$s_0, s_1 = (1 \pm 3\sqrt{5})/2$$
 the 2 roots of Q (13)

$$r_k, r_{k+2} = \frac{s_k \pm \sqrt{s_k^2 - 4}}{2} \qquad k = 0, 1 \tag{14}$$

The vertices of the pentagon are given by 3. Hint: a negative R_2 in this geometric construction means: a vector in the parallelogram has to be taken negative.

The triangle built by the 3 constructed vertices V_0 , V_1 , V_2 is an *isosceles* triangle with a reflection symmetry.

4.3. The third construction, but nothing new, is of type II too

Now the angle to trisect is $\theta = \pi = 180^{\circ}$. Only a square root is necessary to get $\theta/3 = 60^{\circ}, 180^{\circ}, 300^{\circ}$.

Set $R_1 = 1$ and R_2 equals the *negative* of one of the four real roots r_k of the second construction in 4.2.

Because a negative radius R_2 is equivalent to a positive radius and a rotation by π of the triangle inscribed in this circle: this construction is equivalent to the previous subsection 4.2.

5. OPEN QUESTIONS

Are the constructions of type I, type II or both also possible for other p-gons with p a prime of the form 6n + 1? The next primes p to investigate would be p = 19, 31, ...

References

- 1. A. Gleason, "Angle Trisection, the Heptagona, and the Triskaidecagon," *The American Mathematical Monthly*, vol. 95, no. 3, pp. 185–194, 1988; doi:10.2307/2323624
- 2. S. Adlaj, "The Heptagon constructed!," in *semjonadlaj.com*, 2024. [Online]. Available: https:// SemjonAdlaj.com/Excerpts/Heptagon.pdf

Received 20-03-2025, the final version — 15-04-2025.

Helmut Ruhland, MSc, Independent Researcher, Calle 282, #1104, Santa Fe, La Habana, Cuba, implementer in the second sec

Компьютерные инструменты в образовании, 2025 № 1: 27–32 УДК: 514.172.45:514.74 http://cte.eltech.ru doi:10.32603/2071-2340-2025-1-27-32

Унифицированные построения правильных семиугольников и тринадцатиугольников

Руланд Х.¹, MSc, независимый исследователь, 🖂 helmut.ruhland50@web.de

Аннотация

Построения правильных семиугольника и тринадцатиугольника путем трисекции угла хорошо известны. Элегантная конструкция семиугольника С. Ф. Адлай демонстрирует 3-кратную симметрию, связанную с группой Галуа. Основываясь на этой конструкции, в этой статье мы рассмотрим еще одну для семиугольника и еще две для тринадцатиугольника, все с использованием трисекции угла.

Ключевые слова: *геометрическая конструкция, трисекция, семиугольник, тринадцатиугольник.*

Цитирование: Руланд Х. Унифицированные построения правильных семиугольников и тринадцатиугольников // Компьютерные инструменты в образовании. 2025. № 1. С. 27–32. doi:10.32603/2071-2340-2025-1-27-32

Поступила в редакцию 20.03.2025, окончательный вариант — 15.04.2025.

Хельмут Руланд, MSc, независимый исследователь, Калле 282, #1104, Санта-Фе, Гавана, Куба, ⊠ helmut.ruhland50@web.de