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Abstract

Using mathematical models to represent aspects of physical reality is an essential activity
in science and science education. This contribution discusses four approaches of using
computer programming and mathematical models in classroom activities:

1. Mathematical models, found in the textbook, are used as a basis for computer pro-
grams. Students, when creating useful interactive python programs calculating concen-
trations or pH-values, experience similar intellectual challenges as in solving traditional
text book problems.

2. Scratch-animations simulating physical or chemical systems simulation can be specifi-
cally designed to check the validity of given mathematical models.

3. A computer-related challenge is to design a simulation (like gas diffusion in a closed
system with two phases) that might be a basis for discovering a mathematical model (like
Henry's law) or just an element of a mathematical model.

4. Using sensor technology and a Raspberry Pi, students create a computer program that
automatically visualizes the observed system behaviour (like changes in gas concentra-
tions) in order to find a mathematical model.
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1. INTRODUCTION

Models of the physical reality that are taught in high school science lessons are represented
by mathematical equations. Well known examples from physics are Einstein’s equation
E = m- c® representing the idea that energy can be transformed to matter and vice ver-
saand E = h- f representing the dual model of light (discrete photons with energy E versus
electromagnetic waves with a frequency f).

There exist special digital tools for performing simulations and discovering and exploring
models. They can be grouped in two types:

* Open modelling tools like Insightmaker (https://insightmaker.com/) allow students to cre-

ate dynamic models of physical systems and study their behaviour.

* In virtual laboratories, students can simulate experiments that are too expensive, too

time-consuming or too dangerous in reality [3].
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Specialized digital tools have great potential for learning. However, they have certain limita-
tions:

* Students use highly specialized software-tools only seldom. Still they have to acquire tech-
nical knowledge to be able to handle the tool. And part of this knowledge is not transfer-
able and not related to any educational goal.

* Avirtual laboratory is a surrogate for reality and hides the underlying mathematical mod-
els.

Programming projects — using a general purpose programming language like Python or
Scratch — are different from classroom activities with specialized digital tools:

» They imply creating useful digital artifacts and have a stronger focus on engineering and
designing than on researching. “Learning by creating” is the educational paradigm of
“Constructionism” ([1, 2]).

* The students need to develop general informatics competences before and during the
project. This takes time and may require some “professional support” by a computer sci-
ence teacher. However, the acquired computer-related knowledge is deeper and more
general. “Computational thinking” is more and more considered as a competence that ev-
erybody should develop — not just professional programmers [6].

* Programming challenges can be designed in a way that mathematical modelling is specif-
ically involved.

This contribution discusses four approaches of integrating computer programming and math-
ematical modeling in science education: 1) Using mathematical models as a basis for simple in-
teractive Python programs. 2) Developing animations simulating physical or chemical systems
in order to check the validity of given mathematical models. 3) Designing computer simulations
in order to discover mathematical models. 4) Creating computer programs that automatically
visualize sensor data and support checking mathematical models.

2. APPLYING MATHEMATICAL MODELS TO CREATE COMPUTER PROGRAMS

High school science textbooks contain exercises that require algebraic transformations and
calculation. The educational idea is to comprehend the mathematical models by applying them.

Example from a German Chemistry textbook [4]: Calculate the pH of these solutions:

* Sodium hydroxide solution, ¢o(NaOH) = 1 mol/L

¢ Ammonia solution, ¢y (/N Hs) = 0.2 mol/L

The solution of this task requires these activities:

¢ Find relevant mathematical models: pH = —logo(c(Hs 0O")) and pH+pOH = 14.

* Do algebraic transformations and solve equations.

* Look up chemical constants (like pKB(N H3))in a table.

* Use correct wording, in particular write correct units like mol/L for concentrations.
In contrast to conventional pencil and paper textbook exercises, a programming task requires
to develop a digital artifact, that is useful for other people. Example: Write a Python program
that asks for the concentration of sodium hydroxide (NaOH) in water and then calculates the
pH of the solution. That implies basically the same activities as in finding the solution of a text-
book problem, but they are now part of a design process. The programmer must create verbal
system responses that are precise and well understandable and uses scientific vocabulary and
units because they are essential, when asking for input data. Example “Input the concentration
of NaOH in mol/L.” For programming beginners, the first approach would be an interactive pro-
gram, following an input-processing-output pattern.
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from math import log10

print ("Enter the concentration of the NaOH solution.")
x = input("c(NaOH) in mol/L: ")

¢ = float(x)

if ¢ < 10*%(—-7): #1
c = 10*x(=7)
pH = 14 — (-logl0(c)) #2

print ("pH", round(pH, 1))
Example dialog:

Enter the concentration of the NaOH solution.
c¢(NaOH) in mol/L: 0.2
pH 13.3

The program is so short that beginners can develop it from scratch. Line #2 matches the equation
that a student needs to develop when solving the first word problem. The word problem implies
calculations for one given concentration, whereas the program should be able to process all
concentrations and calculate reasonable results. This makes the program more complex than
the single case of a word problem and it requires a deeper elaboration of the chemistry model

The statement in line #2 is reasonable under the assumption that NaOH dissociates com-
pletely to sodium ions Na* and hydroxide Ions OH ™. Since in neutral water the concentration of
hydroxide ions is only 10~ mol/L, in all solutions of practical relevance c(OH-) is approximately
equal to c(NaOH). However, the computer program must handle the case that the user inputs
a lower concentration, may be even 0 mol/L. The statement in line #1 takes care of this. Here
the programmer has used the knowledge that in neutral water pH equals pOH. The equation
pH+pOH = 14 then implies that pOH = 7. Thus ¢c(OH™) = 1077 mol/L. In any solution of NaOH
in water, the concentration of hydroxide ions may never be below this value. More experienced
students may want to develop a version with a graphical user interface (GUI). The advantage is
that is easier to use and that it looks more like a regular app in everyday life.

¢ — O x
oH 13.3
c(NaOH): [0.4 | Calculate pH

Figure 1. Application window of a Python program calculating pH-values

Obviously, the following Python listing is more advanced. Note that the complete chemistry-
related calculation is within a single function definition starting at line #1. So, beginners could
take a prototype program text that already implements the GUI and just code this function.

from tkinter import =*
from math import logl0

def calculate (): #1
X = entry.get()
¢ = float(x)
if ¢ < 10*%(-=7):
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c = 10*=(=7)
pH = 14 — (-logl0(c))
output = "pH {:.1f}".format(pH)
resultLabel.config(text=output)

# Widgets
window= TKk()
label = Label(master =window, text = "c(NaOH):")
resultLabel = Label(master=window, width = 10,
font=("Arial",32), fg="white",
bg = "blue")

button = Button(master=window, text="Calculate pH",
command=calculate ,
font=("Arial",12), fg="blue" )
entry = Entry(master=window, width=20)

# Layout
resultLabel.pack()
label.pack(side=LEFT)
entry.pack(side=LEFT)
button.pack(side=LEFT)
window. mainloop ()

3. CHECKING MATHEMATICAL MODELS USING COMPUTER SIMULATIONS

In high school education, mathematical models are often just used for calculations, but not
deduced from assumptions. A classic example from kinetics is the equation

1
s:so+5at. D

It specifies the location s of a uniformly accelerated object. This equation can be derived from
the definition of acceleration a = % by algebraic rearrangement and integration. Alternatively,
it is possible to create a computer simulation, modelling a rocket or a free-falling stone. If po-
sition, speed, acceleration and elapsed time are documented one can compare the behaviour
of the simulation with the mathematical model. Figure 1 depicts a Scratch project simulating a
uniformly accelerated object. To avoid negative numbers, it is not a free-falling object driven by
gravity but a rocket car moving from left to right.

The script reveals the modelling: The change of position during a time step dt is deter-
mined by speed (ds = v-dt) and the change of speed is determined by acceleration (dv = a-dt).
Command block 1 calculates the position that is expected according to the mathematical model
(equation 1). During run time one can watch the readouts on top of the screen and compare
the values. Obviously, the values are similar but not equal. The smaller the value of the time
step dt the better the numerical approximation. In a real physical experiment [5], the mathe-
matical model can be verified just by observing a real falling object measuring distances and
time intervals. Note the difference: In this approach the model is considered as a black box
model. It describes the behaviour but does not explain it. Real experiments for checking math-
ematical models can be dull and time consuming. For example, the Beer-Lambert law is the
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Figure 2. Scratch project modelling an accelerating rocket car

basis of photometry, a method to determine the concentration of a dye solution by measuring
the absorbance of monochromatic light of a certain wavelength. The absorbance (extinction) is
measured according to equation (2), I0 is the initial light intensity and I1 is the intensity of the
light after having travelled through the solution

10
A=lg(). @)

According to the Beer-Lambert Law, the absorbance of a dye solution is proportional to the
concentration (mols per litre) and path length. The constant € is the molar extinction coefficient,
which is a physical property of the analyte and depends on the wavelength of the monochro-
matic light travelling through the solution

A=¢-d-.c A3)

The derivation of the Beer-Lambert Law requires knowledge of the calculus that high school
students (in Germany) usually do not have. Fig. 3 shows a screen shot from a simple Scratch
simulation, illustrating that the absorbance is proportional to pathlength. The green spots on
the background represent dye molecules in the solution. Red photons travel from left to right
starting at random y-positions and leaving a red track. When a photon hits a molecule, it van-
ishes. The absorption events are counted. The two readouts on top show the number of pho-
tons, which have been absorbed in the first half and the number of photons, which have been
absorbed, in the second half. From these numbers the light intensities I0 (initial intensity),
I1 (intensity in the middle) and 12 (intensity after the solution) are calculated. It may seem plau-
sible that the absorbency of light is proportional to the pathlength. But it might be disturbing
that the logarithm is used to calculate the absorbance. The simulation is not an analytical proof
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Figure 3. Scratch project illustrating the Beer-Lambert-Law.

that the Beer-Lambert Law is correct. But it demonstrates that it is a logical consequence of the
assumptions we have made in the design of the model.

4. CREATING A COMPUTER SIMULATION IN ORDER TO FIND A MATHEMATICAL MODEL

Itis very hard and time consuming to discover quantitative scientific laws and create a math-
ematical model. People can only be creative in a domain they know well. If students are expe-
rienced in Scratch programming, they can use this knowledge to design a simulation that might
be a basis for a mathematical model.

Task: Consider a closed system with two phases — fluid and gas — like a bottle of mineral
water. The water (phase 1) contains solved carbon dioxide as well as the air (phase 2) on top. The
carbon dioxide molecules move, when they hit the interface between the two phases, they just
change to the other phase, from water to air and vice versa. Assumptions: 1) The CO, molecules
move with a constant speed on straight trajectories. 2) CO, molecules move slower in the water
than in the air, since they hit water molecules all the time (the water molecules are invisible).

Challenge: 1) Create the Scratch model. 2) Observe the Scratch model with different numbers
of molecules and write a hypothesis (equation). 3) Try to verify the hypothesis using the Scratch
model.

Fig. 4 shows a possible implementation with Scratch using clones and message passing.
The first script generates several clones. The second scripts defines the motion of each clone
(molecule). When a molecule is in the water phase (dark blue area at the bottom), it moves
slower than in the gas phase (light blue area on top).

A version of Henry’s Law is

c(CO2(8))

—_—= 4)
c(COz(aq))
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Figure 4. Scratch project simulating gas particles in two phases and checking Henry’s Law.

If the volume is constant, the concentration is proportional to the number of molecules. In the
background, a script (connected to the stage) is running sending a message to all molecule-clones
every four seconds. When a molecule-clone receives the message, it checks its position and in-
crements a global variable. Thus, we have the numbers of molecules in both phases (variables
displayed in the upper left corner of the screen). On the screen shot in fig. 4 the third readout
on screen displays the quotient of the numbers of “CO,-molecules” in both “phases” this way
checking Henry’s Law. Note that this Scratch program is not just a simulation. Additional to rep-
resenting objects of the physical world it includes specifically designed features for “measuring”
and checking mathematical models.

5. VISUALIZING SENSOR DATA

In the previous section we discussed the evaluation of computer simulations, which were
based on simple assumptions like the the behaviour of gas molecules. mathematical models
(like Henry’s Law) that are found by checking simulations are basically not more than logical
deductions from the model the simulation is based upon. This section discusses the autom-
atized evaluation of empirical data, gained by observing real experiments. The Raspberry Pi
supports experimenting with all kinds of sensors (luminosity, temperature,ethanol, methane,
carbon dioxide etc.).

Fig. 5 shows an NDIR (non-dispersive infrared) carbon dioxide sensor, connected via SPI (se-
rial peripheral interface) to a Raspberry Pi. It is not very difficult to create a Python program that
reads the sensor data and collects them in a list. The list of numbers can easily be plotted using
the Python module MathPlotLib. A simple experiment with this sensor is the observation of gas
diffusion. The NDIR-sensor is a tube with holes allowing gas molecules to enter and to leave.
Inside the tube the CO,-concentration is measured by detecting the absorbance of infrared ra-
diation. When a person breathes against the sensor, the CO-concentration increases, because
more CO; gets into the tube through the holes. After a few seconds it decreases again, because
the gas molecules move (diffusion) and leave the tube through the holes.
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Figure 5. NDIR-CO,-sensor connected to the GPIO of a Raspberry Pi

Fig. 6 shows the output of a Python program that semi-automatically conducts the diffusion
experiment, collects the sensor data and creates a plot (using MatPLotLib). A further challenge is
to formulate a mathematical model for the change of the concentration of CO; in the tube, write
Python code to calculate a list of numbers, create a plot visualizing this list (using MatPlotLib)
and compare it with the plot based on empirical data.
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Figure 6. Plot visualizing the change of CO,-concentration due to diffusion

6. CONCLUSION

Programming projects can be an enrichment of science classes. They offer many different
ways to elaborate, check or even develop mathematical models of the physical world. This di-
versity makes it possible that even those students that are not primarily interested in math can
find motivation to learn theoretical content. Since a programming project can be open and lead
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to different products, learning is more individual. An open question is, to what extend students
can develop programming competence on their own (without teacher’s help) during projects
in regular sciences classes. Physics, chemistry and biology teacher are not necessarily program-
ming experts. One type of support are media (movies, tutorials, skill cards), specifically designed
for science-related projects.

References

[uny

S. Papert, Mindstorms: Children, computers, and powerful ideas, Basic Books, New York, 1980.

M. Resnick, J. Maloney, A. M. Hernandez, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,

J. Silver, B. Silverman, and Y. Kafai, “Scratch: Programming for All,” Communications of the ACM,

vol. 52, no. 11, pp. 60-67, 2009.

3. V.Potkonjak, M. Gardner, V. Callaghan, P. Mattila, C. Guetl, V. M.Petrovi¢, and K. Jovanovic, “Virtual lab-
oratories for education in science, technology, and engineering: A review,” Computers and Education,
vol. 95, pp. 309-327, 2016.

4. N. Tausch and M. von Wachtendonk, Chemie 2000+ Qualifikationsphase, Buchner Verlag, Bamberg,
2015.

5. L. Borghi, A. De Ambrosis, N. Lamberti, and P. Mascheretti, “A teaching-learning sequence on free fall
motion,” Physics education, vol. 40, no. 3, pp. 266-273, 2005.

6. J. M. Wing, “Computational Thinking,” In Communications of the ACM, vol. 49, no. 3, pp. 33-35, 2006.

»

Received 12.04.2019, the final version — 16.05.2019.

KomnbroTepHble MHCTPYMeHTbI B 06pa3osaHuu, 2019
Ne 2: 55-64

Y/AK: 004.942

http://cte.eltech.ru
doi:10.32603/2071-2340-2019-2-55-64

MaTemaTuueckoe MoAeIMpoBaHMe N NporpaMmMupoBaHme
B eCTeCTBEHHOHay4YHOM 06pa3oBaHUN

Baiirena M."2, gokTop Hayk, mw@creative-informatics.de

1Xonbu,KaMHCKaﬂ obLeobpa3zoBaTenbHas Wkona, Butren, lepmaHuns
ZBECT¢aanKVII7I yHuBepcuTeT Bunbrenoma, MiwoHctep, lepmaHns

AHHOTaUMsA

Mcnonb3oBaHue MatemMaTuyeckmnx MOAeJ’IeVI ANA npeacTaBNeHNA acnekToB ¢VI3I/ILIeCK0I7I
pPeanbHOCTN ABNAETCA BaXKHOIA AEATENbHOCTLIO B HayKe N HAyYHOM O6pa3OBaHVII/I. B pan-
HOW cTaTbe paccMaTpmMBakOTCA YeTbipe NoAX04a K NCMOIb30BAHNKO KOMMNbIOTEPHOTO MPo-
rpaMMmMpoBaHnAa U MaTeMaTU4eCcKoro Mo4ennpoBaHnsa B y‘-le6HOVI AeATeNnbHOCTU:

1. MaTemaTuueckne Mogenu, HalijeHHble B y4ebHKe, NCMONb3YHOTCS B KauecTBe OCHO-
Bbl AN KOMMbHOTEPHbIX NporpamMm. CTyAeHTbI, CO3/aBasti Noe3HbIe MHTepaKT1BHbIE NPo-
rpaMMmbl Ha si3blke Python, paccunTbiBatoLLMe KOHLLEHTPaLUmM Uamn 3HaveHmns pH, ctanku-
BaOTCA C TAKUMM Xe NHTeNNeKTyaNbHbIMU NPO6ieMbl, KaK NPy peLleHnn TpaauLMOHHbIX
3afay yyebHuka.
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2. Scratch-aHUMaLUy, IMUTHPYIOLLIME MOAENNPOBaHE GpU3NUYECKIX U XUMUYECKUX CU-
cTeM, MOTyT 6bITb CreLnanbHoO pas3paboTaHbl Ans MPOBEPKM AOCTOBEPHOCTU 3ajaHHbIX
MaTeMaTUYecknX Mojenei.

3. 3agauya, CBsi3aHHas C KOMMbIOTEPOM, 3aKN0YaeTcs B pa3paboTke MojenvpoBaHus (Ha-
npumep, AMPdy3nn rasa B 3aMKHYTOW cucTeme ¢ 4BYMA GazamMu), UTO MOXKET BbITb OCHO-
BOIi A1 OTKPBITUS MaTemMaTnyeckoin Mojenu (Hanpumep, 3akoHa FeHpu) nan anemeHTa
MaTemMaTUyeckon moaenu.

4. Vcnonb3ys CeHCOPHYH TexHoNorno 1 Raspberry Pi, CTyZeHTbl CO34at0T KOMMNbHOTEp-
Hyt0 NporpamMMy, KoTopas aBToMaTNYecku Br3yanu3rpyeT HabatogaeMoe nosejeHune cu-
CTeMbl (HanprimMep, M3MeHeHe KOHLEHTPpaLIMK ras3a), 4Tobbl B fanbHelillem pa3paboTaTb
MaTeMaTNYeCKyo MOAeb.

KnioueBble clOBa: Hayka 06pa3oBaHuie, Python, Scratch, nporpammupoBaHye.

LUnTtunposaHue: BaiireHg M. MaTemaTnyeckoe MogenmpoBaHue 1 NporpaMMmupoBaHue
B eCTeCTBEHHOHAy4YHOM 06pa3oBaHuy // KOMMbloTepHble MHCTPYMeHThI B 06pa3oBaHum.
2019. Ne 2. C. 55-64. doi: 10.32603/2071-2340-2019-2-55-64

Moctynuna B pegakymro 12.04.2019, okoHYaTeNbHbIl BapuaHT — 16.05.2019.
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