RESOLUTION OF SUDOKUS USING GROEBNER BASIS

Gonzalez-Dorrego M. R.
Universidad Autónoma de Madrid, Madrid, SPAIN

Abstract

We study the resolution of sudokus and generalized sudokus using Groebner basis. Let x_{1}, \ldots, x_{81} the 81 squares which form the sudoku, arranged from left to right and from top to bottom. Its solution will be $\left(a_{1}, \ldots, a_{81}\right)$, where a_{i} is the number in the square associated to the variable x_{i}. Let S be a sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, 81\}$. All the necessary information to solve the sudoku is contained in the algebraic set $\mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)$. We shall use Groebner basis to find a solution and give a SAGE code for that purpose.

Keywords: Sudoku, generalized sudoku, Gröbner base, algebraic manifold.
Citation: M. R. Gonzalez-Dorrego, "Resolution of Sudokus Using Groebner Basis," Computer tools in education, no. 3, pp. 5-21, 2018.

1. INTRODUCTION

A sudoku puzzle is a 9×9 grid divided into nine 3×3 boxes where there are numbers between 1 and 9 in some of the squares in the grid. To solve the puzzle we have to find the remaining numbers in such a way that every row and every column only contain the digits 1 to 9 and also every 3×3 box only contains those digits, without repetitions. The puzzle derives its name from the japanese words Su, which means number and Doku, which means solitary. This puzzle was popular in Japan since 1986 and it was in 2005 that it became internationally known. This mathematical game had it origin in New York at the end of 1970 where it was known as 'Number Place'. It was published in a magazine called: "Math Puzzles and Logic Problems".

A sudoku is a particular case of what is called a Euler square which is an $n \times n$ grid such that each row and column of this grid must be filled with the n distinct numbers without repetitions.

A magic square is a 3×3 grid such that the sum of every row, column and diagonal equals 15. One can discuss the maximum number of magic squares that can appear in a unique solution sudoku; for a discussion on this topic see [5].

The resolution of the sudoku can be seen as a problem of coloring the vertices of a plane graph with 81 vertices such that two of them are adjacent if they belong to the same row, column or 3×3 block. If we assign a different color to each of the 9 digits, vertices with the same color cannot be adjacent which means that a digit cannot be twice in each row or each column or each 3×3 block.

Let x_{1}, \ldots, x_{81} the 81 squares which form the sudoku, arranged from left to right and from top to bottom. Its solution will be $\left(a_{1}, \ldots, a_{81}\right)$, where a_{i} is the number in thesquare associated to the variable x_{i}. Let S be a sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$,
for $L \subset\{1, \ldots, 81\}$. All the necessary information to solve the sudoku is contained in the algebraic set $\mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)$. We also consider generalized sudokus. We shall use Groebner basis to find a solution. Some of the results are based on the Masters' Thesis of A. Delgado Latournerie [1].

The minimum number of preassigned data c_{i} for a unique solution sudoku is 17 . This result was proven by McGuire-Tugemann-Civario [3] using computer software. For an interesting reading on the subject, see [4].

The rate of difficulty of a sudoku is ranked using stars. One-star sudokus are very easy to solve while a 5 -star sudoku is very hard to solve. There is a famous sudoku, created by the Finnish mathematician Arto Inkala in 2012, whose difficulty is ranked with 11 stars and it is called Everest sudoku. We are not going to discuss here the definition of difficulty for a sudoku.

First we introduce some basic concepts on Algebraic Geometry and on Groebner basis. In 3 we solve sudokus using Groebner basis. In 4 we give SAGE codes for its resolution. In 5, 6 and 7 we study generalizations of sudoku puzzles.

2. BASIC CONCEPTS

Definition 1. Let R be a commutative ring. Let $I \subset R$ be an ideal of R.

- Let $I \neq R$. I is a prime ideal of R if whenever $a b \in I$, either $a \in I$ or $b \in I$.
- Let J be an ideal of R such that $I \subset J$. I is a maximal ideal if $I=J$ or $J=R$.
- The radical of I is the ideal $\sqrt{I}=\left\{a \in R: a^{n} \in I\right.$, for some $\left.n \in \mathbb{N}\right\}$.
- I is a radical ideal if $I=\sqrt{I}$.

Definition 2. Let $k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring with coefficients in the field k. Let $\mathbb{A}_{k}{ }^{n}$ denote the affine space of dimension n over k. For $J \subset k\left[x_{1}, \ldots, x_{n}\right]$ we define

$$
\mathbb{V}(J)=\left\{P \in \mathbb{A}_{k}^{n}: f(P)=0, \forall f \in J\right\} .
$$

$\mathbb{V}(J)$ is called affine algebraic set.
Definition 3. Let $S \subset \mathbb{A}_{k}{ }^{n}$. We define

$$
\mathbb{\square}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(P)=0, \forall P \in S\right\} .
$$

Properties

- $\mathbb{V}(0)=\mathbb{A}_{k}{ }^{n}, \mathbb{V}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)=\varnothing$.
- $\mathbb{\square}(\varnothing)=k\left[x_{1}, \ldots, x_{n}\right], \square\left(\mathbb{A}_{k}^{n}\right)=0$.
- For $J_{1} \subset J_{2}, \mathbb{V}\left(J_{2}\right) \subset \mathbb{V}\left(J_{1}\right)$.
- For $S_{1} \subset S_{2}$, $\square\left(S_{2}\right) \subset \square\left(S_{1}\right)$.
- Let $\left\{S_{j}\right\}, j \in J$, be a collection of subsets of $\mathbb{A}_{k}{ }^{n}$. $\sum_{j \in J} \square\left(S_{j}\right)=\square\left(\cap_{j \in J} S_{j}\right)$.
- Let $\left\{J_{i}\right\}, i \in I$, be a collection of subsets of $k\left[x_{1}, \ldots, x_{n}\right] . \cap_{i \in I} \mathbb{V}\left(J_{i}\right)=\mathbb{V}\left(\sum_{i \in I} J_{i}\right)$.

Definition 4. We define the Zariski topology in $\mathbb{A}_{k}{ }^{n}$ the topology whose closed sets are affine algebraic sets.

Definition 5. An affine algebraic set $S \subset \mathbb{A}_{k}{ }^{n}$ is irreducible if, whenever $S=S_{1} \cup S_{2}$, for $S_{i} \subset \mathbb{A}_{k}{ }^{n}$, $1 \leq i \leq 2, S=S_{1}$ or $S=S_{2}$. An irreducible affine algebraic set is called an algebraic variety.

Theorem 6. Hilbert's Nullstellensatz Let k be an algebraically closed field. Let \mathfrak{A} be an ideal in $k\left[x_{1}, \ldots, x_{n}\right] . \square(\mathbb{V}(\mathfrak{H}))=\sqrt{\mathfrak{N}}$.

Proof. See [2; Th. 13A].
Proposition 7. Let k be an algebraically closed field. There is a one-to-one correspondence between the ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ and the sets of $\mathbb{A}_{k}{ }^{n}$ such that radical ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ correspond to affine algebraic sets; the prime ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ correspond to algebraic varieties and the maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ correspond to the points of $\mathbb{A}_{k}{ }^{n}$.

Proof. See [2; 1.4, 1.4.4].
Proposition 8. Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal such that $\mathbb{V}(I)$ is finite. Then,

- (a) $|\mathbb{V}(I)| \leq \operatorname{dim}_{k}\left(\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I}\right)$,
- (b) Let k be an algebraically closed field. If I is a radical ideal, $|\mathbb{V}(I)|=\operatorname{dim}_{k}\left(\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I}\right)$; that is, the number of points of $|\mathbb{V}(I)|$, counted with its multiplicity, is exactly $\operatorname{dim}_{k}\left(\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I}\right)$.

Proof. See [1; Prop. 5].
Definition 9. A monomial in the variables x_{1}, \ldots, x_{n} is a product of the form $x^{\alpha}=x_{1}{ }^{\alpha_{1}}, \ldots, x_{n}{ }^{\alpha_{n}}$, with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n}$. An ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a monomial ideal if it admits a system of generators which are monomials.

Definition 10. Let $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$. Let $>$ be a monomial ordering.

- The multidegree of f is multideg $(f)=\max \left\{\alpha \in \mathbb{Z}_{\geq 0}{ }^{n}: a_{\alpha} \neq 0\right\}$.
- The leading coefficient of f is $L C(f)=a_{\text {multideg }(f)}$.
- The leading monomial of f is $L M(f)=x^{\text {multideg }(f)}$ with coefficient 1.
- The leading term of f is $L T(f)=a_{\text {multideg }(f)} x^{\operatorname{multideg}(f)}$

Definition 11. Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero ideal. $L T(I)$ denotes the set of the leading terms of the elements of I.

Definition 12. Let us fix a monomial ordering. A finite subset $G=\left\{g_{1}, \ldots, g_{t}\right\}$ of an ideal $I \subset$ $k\left[x_{1}, \ldots, x_{n}\right]$ is a Groebner basis if $<L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)>=<L T(I)>$, where $L T$ denotes the leading term as defined in Definition 10.

Definition 13. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n}$. We say that $\alpha>_{\text {lex }} \beta$ and, thus, that $x^{\alpha}>_{\text {lex }} x^{\beta}$, if the first nonzero term of the vector $\alpha-\beta$ is posittive.

Definition 14. A Groebner basis \mathbf{G} is reduced, for a polynomial ideal I, if

- $L C(f)=1, \forall f \in G$.
- For every $f \in G$, no monomial of f is in $\langle L T(G-\{f\})\rangle$.

Lemma 15. Let $m, n \in \mathbb{N}$, $a_{i j} \in \mathbb{N}$. For each $j, 1 \leq j \leq m$, let $\left\{x_{i j}-a_{i j}\right\}_{i=1}^{n}$, be a reduced Groebner basis of the ideal $I_{j} \subset k\left[\left\{x_{i j}\right\}_{i=1}^{n}\right]$. Then $\cup_{j=1}^{m}\left(\left\{x_{i j}-a_{i j}\right\}_{i=1}^{n}\right), a_{i j} \in \mathbb{N}, 1 \leq i \leq n, 1 \leq j \leq m$, is a reduced Groebner basis of the ideal $\sum_{j=1}^{m} I_{j} \subset k\left[\left\{\left\{x_{i j}\right\}_{i=1}^{n}\right\}_{j=1}^{m}\right]$.

Proof. Let $m, n \in \mathbb{N}, a_{i j} \in \mathbb{N}$. By hypothesis, for each $j, 1 \leq j \leq m$, let $\left\{x_{i j}-a_{i j}\right\}_{i=1}^{n}, a_{i j} \in \mathbb{N}$, be a reduced Groebner basis of the ideal I_{j}; thus it satisfies the conditions of Definition 14. Since all the monomials are linear, $\cup_{j=1}^{m}\left(\left\{x_{i j}-a_{i j}\right\}_{i=1}^{n}\right), 1 \leq i \leq n, 1 \leq j \leq m$, is a reduced Groebner basis of the ideal $\sum_{j=1}^{m} I_{j} \subset k\left[\left\{\left\{x_{i j}\right\}_{i=1}^{n}\right\}_{j=1}^{m}\right]$.

Example 16. See [1; Ej. 12]. Let $k=\mathbb{C}$.
Let $I=<x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1>$.
A Groebner basis for I with respect to the lexicographical order can be calculated using the mathematical software SAGE using the command .grobner_basis()

$$
\begin{gathered}
\text { R. }\langle x, y, z\rangle=\text { PolynomialRing }\left(C C, 3, \text { order }=^{\prime} \text { le } x^{\prime}\right) \\
I=\text { ideal }\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right) \\
\text { I.grobner_basis }()
\end{gathered}
$$

We get

$$
\begin{gather*}
\left\{z^{2}+y+x-1, y^{2}-y-z^{2}+z, 2 y z^{2}+z^{4}-z^{2}\right. \\
\left.z^{6}-4 z^{4}+4 z^{3}-z^{2}\right\} \tag{1}
\end{gather*}
$$

If we just want a Groebner basis obtained from the Buchberger we should use
I.grobner_basis('toy: buchberger')

Thus, we obtain

$$
\begin{gather*}
\left\{x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1, y^{2}-y-z^{2}+z\right. \\
\left.-y z^{4}-y z^{2}-2 z^{4}+2 z^{3},-2 y z^{2}-z^{4}+z^{2}, z^{6}-4 z^{4}+4 z^{3}-z^{2}\right\} \tag{2}
\end{gather*}
$$

(1) and (2) generate the same ideal I.

Definition 17. Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ be two nonzero polynomials. Let multideg $(f)=\alpha$, $\operatorname{multideg}(g)=\beta$. Let $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right), 1 \leq i \leq n$.

- The monomial x^{γ} is the least common multiple of $L M(f)$ and $L M(g)$.
- The S-polynomial of f and g is

$$
S(f, g)=\frac{x^{\gamma}}{L T(f)} f-\frac{x^{\gamma}}{L T(g)} g
$$

Proposition 18. Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero ideal. There exists a Groebner basis of I with respect to every monomial order. Moreover, any Groebner basis of I is a system of generators of I. Proof. See [1; Cor. 2].

3. RESOLUTION OF SUDOKUS USING GROEBNER BASIS

Let us consider the sudoku grid

Let us denote by x_{1}, \ldots, x_{81} the 81 squares which form the sudoku, arranged from left to right and from top to bottom. Its solution will be $\left(a_{1}, \ldots, a_{81}\right)$, where a_{i} is the number in the square associated to the variable x_{i}. Let us consider the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{81}\right]$.

Definition 19. - (a) For $1 \leq i \leq 81$, let $F_{i}\left(x_{i}\right)=\prod_{k=1}^{9}\left(x_{i}-k\right)$.

- (b) For $1 \leq i<j \leq 81$, let

$$
G_{i j}\left(x_{i}, x_{j}\right)=\frac{F_{i}\left(x_{i}\right)-F_{j}\left(x_{j}\right)}{x_{i}-x_{j}} \in \mathbb{Q}\left[x_{i}, x_{j}\right], \text { with } i \neq j
$$

Remark 20. Note that $F_{i}\left(x_{i}\right)-F_{j}\left(x_{j}\right)$ is 0 in $\mathbb{V}\left(x_{i}-x_{j}\right)$; thus $\left(x_{i}-x_{j}\right)$ is a factor of $F_{i}\left(x_{i}\right)-F_{j}\left(x_{j}\right)$ for $i \neq j$. Moreover $G_{i j}\left(x_{i}, x_{j}\right)$ is not divisible by $\left(x_{i}-x_{j}\right)$, since, for $x_{i}=x_{j}, G_{i j}\left(x_{i}, x_{i}\right)=F_{i}^{\prime}\left(x_{i}\right)$ which is not 0 since F_{i} is not constant. Also, if a_{i}, a_{j} are such that $G_{i j}\left(a_{i}, a_{j}\right)=0$ and $F_{i}\left(a_{i}\right)=0=F_{j}\left(a_{j}\right)$ we would have that $a_{i} \neq a_{j}$, for, otherwise, $G_{i j}\left(a_{i}, a_{i}\right)=F_{i}^{\prime}\left(a_{i}\right) \neq 0$ because there would be a summand of F_{i}^{\prime} which would not be 0 in $a_{i} \in\{1, \ldots, 9\}$.

Notation 21. Let $E=\{(i, j) \in T\}$
$(i, j) \in T$ when $1 \leq i<j \leq 81$ and the ith and jth cells belong to the same row, column or 3×3 block.

We consider the ideal I generated by the polynomials $F_{i}, 1 \leq i \leq 81$, and $G_{i j},(i, j) \in E$. Let S be a sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, 81\}$.

Remark 22. The ideal $I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ is the ideal generated by $I \cup<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ and

$$
\mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)=\mathbb{V}(I) \cap \mathbb{V}\left(<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)
$$

Proposition 23. The following statements are equivalent:

- (1) Let $L \subset\{1, \ldots, 81\}$. We have $a=\left(a_{1}, \ldots, a_{81}\right) \in \mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right.$, where c_{i} are certain constants.
- (2) $a_{i} \in\{1, \ldots, 9\}$, for $i \in\{1, \ldots, 81\}$, with $a_{i} \neq a_{j}$, for $(i, j) \in E$, and $a_{i}=c_{i}$, for all $i \in L$.

Proof. See [1; Prop. 4].
(1) \Longrightarrow (2) Let $a \in \mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)$. Then $F_{i}\left(a_{i}\right)=0, \forall i \in\{1, \ldots, 81\}$ and $a_{i}=c_{j}$, for all $i \in L$. Let us prove that $a_{i} \neq a_{j}$, for $(i, j) \in E$. Let us assume that there is a pair $(k, l) \in E$ such that $a_{k}=b=a_{l}$. Since $F_{k}\left(x_{k}\right)=F_{l}\left(x_{l}\right)+\left(x_{k}-x_{l}\right) G_{k l}\left(x_{k}, x_{l}\right)$, we obtain $F_{k}\left(x_{k}\right)=\left(x_{k}-b\right) G_{k l}\left(x_{k}, b\right)$. If $G_{k l}(b, b)=0$, we would obtain that b is a zero of F_{k} of multiplicity at least 2 which is impossible.
$(2) \Longrightarrow$ (1) If for all $i \in\{1, \ldots, 81\} a_{i}$ satisfies the first condition of (2) and also $a_{i}=c_{i}$, for all $i \in L$, then every $F_{i}, i \in\{1, \ldots, 81\}$, would be 0 on them and $x_{i}-c_{i}=0$, for all $i \in L$. If also a_{i}, $i \in\{1, \ldots, 81\}$, satisfies the second condition of (2), then $G_{i j}$ would be 0 on $a=\left(a_{1}, \ldots, a_{81}\right)$.

Remark 24. Let S be a sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, 81\}$. Let $I_{S}=I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ be the ideal associated to the sudoku S. Since $I_{S} \subset \mathbb{C}\left[x_{1}, \ldots, x_{81}\right]$. We have $\left|\mathbb{V}\left(I_{S}\right)\right|<9^{81}<\infty$ and I_{S} is a radical ideal. By Proposition 8,

$$
\left|\mathbb{V}\left(I_{S}\right)\right|=\operatorname{dim}_{\mathbb{C}}\left(\frac{\mathbb{C}\left[x_{1}, \ldots, x_{81}\right]}{I_{S}}\right) .
$$

We want to find out when the solution is unique.
Proposition 25. The following statements are equivalent:

- (1) $a=\left(a_{1}, \ldots, a_{81}\right)$ is the unique solution of the sudoku S.
- (2) $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}>$.
- (3) $\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}$ is a reduced Groebner basis of I_{S}.

Proof. See [1; Prop. 6].
$(1) \Longrightarrow$ (2) Since a is a solution $a \in \mathbb{V}\left(I_{S}\right)$. Since a is the unique solution $a=\mathbb{V}\left(I_{S}\right)$ because if there would exist $b \in \mathbb{V}\left(I_{S}\right)$, such that $b \neq a, b$ would also be a solution of S which would contradict the unicity of a.

By Theorem 6, $\sqrt{I_{S}}=\mathbb{\square}\left(\mathbb{V}\left(I_{S}\right)\right)$. Thus, $\sqrt{I_{S}}=\mathbb{\square}(a)=<\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}>$. In particular, for $i \in\{1, \ldots, 81\}$, there exists $m_{i} \in \mathbb{N}$ such that $\left(x_{i}-a_{i}\right)^{m_{i}} \in I_{S}$. Therefore, $I_{S} \cap k\left[x_{i}\right]=$ $<\left(x_{i}-a_{i}\right)^{t}>$, for some $t \in \mathbb{N}$. But $t=1$ since the polynomials $F_{l}\left(x_{l}\right)$ are free of squares. Thus, $I_{S}=\left\langle\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}>\right.$.
(2) \Rightarrow (3) We have to see that $\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}$ is a reduced Groebner basis. Let $G:=\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}$. It is easy to see that G is a Groebner basis since, for each pair (i, j), with $i \neq j$, the remainder of the division of $S\left(x_{i}-a_{i}, x_{j}-a_{j}\right)$ by G is 0 . Moreover, for each $i \in\{1, \ldots, 81\}, L C\left(x_{i}-a_{i}\right)=1$ and no monomial of $x_{i}-a_{i}$ belongs to $<L T\left(G-\left\{x_{i}-a_{i}\right\}\right)>$, $<L T\left(G-\left\{x_{i}-a_{i}\right\}\right)>=<\left\{x_{j}, 1 \leq j \leq 81, i \neq j\right\}>$. Thus, $\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}$ is a reduced Groebner basis of I_{S}.
(3) \Rightarrow (2) Since $\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}$ is a reduced Groebner basis of I_{S}, by Proposition 18 , $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}>$.
(2) $\Rightarrow \Rightarrow$ (1) By Proposition 23 we know that the solutions of a sudoku are the zeroes of the ideal I_{S}. Thus, if $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{81}-a_{81}\right\}>$, then $\left(a_{1}, \ldots, a_{81}\right)$ is the unique solution.

4. SAGE CODES TO SOLVE A SUDOKU

See also [1, pp. 54-56].
(1) Let us construct E, the polynomials F_{i} and $G_{i j}$ and the ideal I generated by them.
\# the set E :
$R=$ Integers (3)
$\mathrm{E}=[$]
for j in $[1, ., 9]:$
for k in $[1, ., 9]:$
$i=(j-1) * 9+k$
$a=R(j)$
if $a==0$:
$a=3$
$b=R(k)$
if $b==0$:
$b=3$
\# Pairs (i, j) such that x_{i} and x_{j} belong to the same row:
for $l \operatorname{in}[k+1, ., 9]:$
$E \cdot \operatorname{append}((i, i+l-k)$
\# Pairs (i, j) such that x_{i} and x_{j} belong to the same column:
for $l \operatorname{in}[j+1, ., 9]$:
$E \cdot \operatorname{append}((i,(l-1) * 9+k))$
\# Pairs (i, j) such that x_{i} and x_{j} belong to the same 3×3 block:
for m in $[a, ., 3]$:
for n in $[1, ., 3]$:
if $i<((j-1)+(3-m)) * 9+k-b+n$:
$E \cdot \operatorname{append}((i,((j-1)+(3-m)) * 9+k-b+n)$
print(E)
\# Polynomials F_{i} :
F = []
variable $=[0]$
$P(x)=\operatorname{prod}([(x-j)$ for j in $[1, ., 9]])$
for j in $[1, ., 81]:$
variable.append(var('x'+ str(j)))
printP (variable[j])
\# Polynomials $G_{i j}$:
$\operatorname{var}(' y$ ')
$G(x, y)=(P(x)-P(y)) /(x-y)$
TheGij = [G(variable[a], variable[b]) for a, b in E]
(2) Now, we are going to construct the ideal I_{S}, generated by the polynomials F_{i}, $i \in\{1, \ldots, 81\}$, and $G_{i j},(i, j) \in E$, and by the polynomials corresponding to the preassigned values to the sudoku. In a matrix 9×9, the values not preassigned will be written as 0 .
\# Polynomials corresponding to the preassigned values:
def Preassigned(matrix)
polynomial = []
for i in $[0, ., 8]:$
for j in $[0, ., 8]$:
if matrix[i,j] ! = 0
$k=i * 9+(j+1)$
$\mathrm{p}=$ variable[k] - matrix[i, j]
polynomial.append(p)
return(polynomial)
$T=$ PolynomialRing(QQ; [' x ' $+\operatorname{str}(j)$ for j in [1,.,81] $)$
$M=\operatorname{matrix}(Q Q ; \operatorname{matrix}[i, j]$ for i, j in [1,.,9])
L = Preassigned(M)
TheGij = [G(variable[a]; variable[b]) for a, b in E]
$\mathrm{I}=\mathrm{T} . \mathrm{ideal}(\mathrm{L}+\mathrm{TheGij})$
show(I•groebner_basis())
$U=I \cdot g r_{\text {roebner_basis() }}$
N1=U[54:56]
N2=U[63:65]
N3=U[72:74]
$\mathrm{N}=\mathrm{N} 1+\mathrm{N} 2+\mathrm{N} 3$
$x=‘ x ’+\operatorname{str}(j)$ for j in $[1, ., 81]$
$a=$ 'a' $+\operatorname{str}(j)$ for j in [1,.,81]
$\operatorname{def} g(x-a)=a$
show $g(x-a)$ for $x-a$ in N
Let us consider the following sudoku grid S

		6		4				
	9		8		7			
	8	2				3		
						8	4	
							6	5
1		5						7
4			1	6			9	
		1	4					
	2		7		3			8

Let us calculate the Groebner basis of the ideal I_{S}
$R=$ PolynomialRing(QQ ; [' x ' $+\operatorname{str}(\mathrm{j})$ for j in [1,... 81$]]$)
$M=\operatorname{matrix}(Q Q ;[[0,0,6,0,4,0,0,0,0],[0,9,0,8,0,7,0,0,0]$,
$[0,8,2,0,0,0,3,0,0],[0,0,0,0,0,0,8,4,0],[0,0,0,0,0,0,0,6,5]$
$[1,0,5,0,0,0,0,0,7],[4,0,0,1,6,0,0,9,3],[0,0,1,4,0,0,0,0,0]$,
[$0,2,0,7,0,3,0,0,8]])$
L = Preassigned(M)
TheGij = [G(variable[a]; variable[b]) for a; b in E]
$\mathrm{I}=\mathrm{R}:$ ideal(L + TheGij) Once L added, the polynomials F_{i} are redundant.
show(I•groebner_basis())
$\left[x_{1}-3 ; x_{2}-1 ; x_{3}-6 ; x_{4}-2 ; x_{5}-4 ; x_{6}-5 ; x_{7}-7 ; x_{8}-8 ; x_{9}-9 ; x_{10}-5 ;\right.$
$x_{11}-9 ; x_{12}-4 ; x_{13}-8 ; x_{14}-3 ; x_{15}-7 ; x_{16}-6 ; x_{17}-2 ; x_{18}-1 ; x_{19}-7$;
$x_{20}-8 ; x_{21}-2 ; x_{22}-9 ; x_{23}-1 ; x_{24}-6 ; x_{25}-3 ; x_{26}-5 ; x_{27}-4 ; x_{28}-9 ;$
$x_{29}-6 ; x_{30}-3 ; x_{31}-5 ; x_{32}-7 ; x_{33}-1 ; x_{34}-8 ; x_{35}-4 ; x_{36}-2 ; x_{37}-2$;
$x_{38}-7 ; x_{39}-8 ; x_{40}-3 ; x_{41}-9 ; x_{42}-4 ; x_{43}-1 ; x_{44}-6 ; x_{45}-5 ; x_{46}-1 ;$
$x_{47}-4 ; x_{48}-5 ; x_{49}-6 ; x_{50}-8 ; x_{51}-2 ; x_{52}-9 ; x_{53}-3 ; x_{54}-7 ; x_{55}-4 ;$
$x_{56}-5 ; x_{57}-7 ; x_{58}-1 ; x_{59}-6 ; x_{60}-8 ; x_{61}-2 ; x_{62}-9 ; x_{63}-3 ; x_{64}-8 ;$
$x_{65}-3 ; x_{66}-1 ; x_{67}-4 ; x_{68}-2 ; x_{69}-9 ; x_{70}-5 ; x_{71}-7 ; x_{72}-6$;
$x_{73}-6 ; x_{74}-2 ; x_{75}-9 ; x_{76}-7 ; x_{77}-5 ; x_{78}-3 ; x_{79}-4$;
$\left.x_{80}-1 ; x_{81}-8\right]$
The unique solution is:
$(3,1,6,2,4,5,7,8,9,5,9,4,8,3,7,6,2,1,7,8,2,9,1,6$,
$3,5,4,9,6,3,5,7,1,8,4,2,2,7,8,3,9,4,1,6,5,1,4,5$,
$6,8,2,9,3,7,4,5,7,1,6,8,2,9,3,8,3,1,4,2,9,5,7,6$,
$6,2,9,7,5,3,4,1,8)$
Notice that the solution is unique as it is known, by Proposition 8, (b), that

$$
\left|\mathbb{V}\left(I_{S}\right)\right|=\operatorname{dim}_{\mathbb{C}}\left(\frac{\mathbb{C}\left[x_{1}, \ldots, x_{81}\right]}{I_{S}}\right)=1
$$

If we solve it using the command "Sudoku()" of SAGE we obtain sudoku(M)

S = Sudoku(M)
print('The number of solutions of this sudoku is:')
len(list(S.dlx())) \# It computes the number of solutions of this sudoku.

3	1	6	2	4	5	7	8	9
5	9	4	8	3	7	6	2	1
7	8	2	9	1	6	3	5	4
9	6	3	5	7	1	8	4	2
2	7	8	3	9	4	1	6	5
1	4	5	6	8	2	9	3	7
4	5	7	1	6	8	2	9	3
8	3	1	4	2	9	5	7	6
6	2	9	7	5	3	4	1	8

5. GENERALIZATIONS OF SUDOKU PUZZLES

Definition 26. We call a generalized sudoku an (mn) $\times(m n)$ grid, $m, n \in \mathbb{N}, m, n \geq 2$, divided into $m \times n$ boxes where there are numbers between 1 and $m n$ in some of the squares in the grid. To solve the puzzle we have to find the remaining numbers in such a way that every row and every column only contain the digits 1 to $m n$ and also every $m \times n$ box only contains those digits, without repetitions

Remark 27. - When $m=n=2$ the generalized sudoku is called
Shidoku (see VII).

- When $m=2$ and $n=3$ the generalized sudoku is called Roku sudoku.
- When $m=2$ and $n=4$ the generalized sudoku is called Hachi sudoku.
- When $m=3$ and $n=4$ there is a type of generalized sudoku which uses the digits from 1 to 9 and the letters A, B and C instead of the digits 10, 11 and 12. This type is called Juuni sudoku.
- When $m=n=4$ there is a type of generalized sudoku which uses the digits from 1 to 9 and the letters A, B, C, D, E, F and G instead of the digits $10,11,12,13,14,15$ and 16. This type is called Supersudoku.

Let $r=(m n)^{2}$. Let x_{1}, \ldots, x_{r} the r squares which form the sudoku, arranged from left to right and from top to bottom. Its solution will be $\left(a_{1}, \ldots, a_{r}\right)$, where a_{i} is the number in the square associated to the variable x_{i}. Let S be a generalized sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, r\}$. All the necessary information to solve the sudoku is contained in the algebraic set $\mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)$.

Definition 28. - (a) For $1 \leq i \leq r$, let $F_{i}\left(x_{i}\right)=\prod_{k=1}^{m n}\left(x_{i}-k\right), k \in\{1, \ldots, m n\}$, $i \in\{1, \ldots, r\}$.
-(b) For $1 \leq i<j \leq r$, let

$$
G_{i j}\left(x_{i}, x_{j}\right)=\frac{F_{i}\left(x_{i}\right)-F_{j}\left(x_{j}\right)}{x_{i}-x_{j}} \in \mathbb{Q}\left[x_{i}, x_{j}\right], \text { with } i \neq j
$$

Remark 29. Note that $F_{i}\left(x_{i}\right)-F_{j}\left(x_{j}\right)$ is 0 in $\mathbb{V}\left(x_{i}-x_{j}\right)$; thus $\left(x_{i}-x_{j}\right)$ is a factor of $F_{i}\left(x_{i}\right)-F_{j}\left(x_{j}\right)$ for $i \neq j$. Moreover $G_{i j}\left(x_{i}, x_{j}\right)$ is not divisible by $\left(x_{i}-x_{j}\right)$, since, for $x_{i}=x_{j}, G_{i j}\left(x_{i}, x_{i}\right)=F_{i}^{\prime}\left(x_{i}\right)$ which is not 0 since F_{i} is not constant. Also, if a_{i}, a_{j} are such that $G_{i j}\left(a_{i}, a_{j}\right)=0$ and $F_{i}\left(a_{i}\right)=0=F_{j}\left(a_{j}\right)$ we would have that $a_{i} \neq a_{j}$, for, otherwise, $G_{i j}\left(a_{i}, a_{i}\right)=F_{i}^{\prime}\left(a_{i}\right) \neq 0$ because there would be a summand of F_{i}^{\prime} which would not be 0 in $a_{i} \in\{1, \ldots, m n\}$.

Notation 30. Let $r=(m n)^{2}$. Let $E=\{(i, j) \in T\}$.
$(i, j) \in T$ when $1 \leq i<j \leq r$ and the ith and j th cells belong to the same row, column or $m \times n$ block.

We consider the ideal I generated by the polynomials $F_{i}, 1 \leq i \leq r$, and $G_{i j},(i, j) \in E$. Let S be a sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, r\}, r=(m n)^{2}$.

Remark 31. The ideal $I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ is the ideal generated by $I \cup<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ and

$$
\mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)=\mathbb{V}(I) \cap \mathbb{V}\left(<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)
$$

Proposition 32. Let $r=(m n)^{2}$. The following statements are equivalent:

- (1) Let $L \subset\{1, \ldots, r\}$. We have $a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right.$, where c_{i} are certain constants.
- (2) $a_{i} \in\{1, \ldots, m n\}$, for $i \in\{1, \ldots, r\}$, with $a_{i} \neq a_{j}$, for $(i, j) \in E$, and $a_{i}=c_{i}$, for all $i \in L$.

Proof. See Prop. 23.
(1) $\Rightarrow \Rightarrow$ (2) Let $a \in \mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)$. Then $F_{i}\left(a_{i}\right)=0, \forall i \in\{1, \ldots, r\}$ and $a_{i}=c_{j}$, for all $i \in L$. Let us prove that $a_{i} \neq a_{j}$, for $(i, j) \in E$. Let us assume that there is a pair $(k, l) \in E$ such that $a_{k}=b=a_{l}$. Since $F_{k}\left(x_{k}\right)=F_{l}\left(x_{l}\right)+\left(x_{k}-x_{l}\right) G_{k l}\left(x_{k}, x_{l}\right)$, we obtain $F_{k}\left(x_{k}\right)=\left(x_{k}-b\right) G_{k l}\left(x_{k}, b\right)$. If $G_{k l}(b, b)=0$, we would obtain that b is a zero of F_{k} of multiplicity at least 2 which is impossible.
(2) \Longrightarrow (1) If for all $i \in\{1, \ldots, r\} a_{i}$ satisfies the first condition of (2) and also $a_{i}=c_{i}$, for all $i \in L$, then every $F_{i}, i \in\{1, \ldots, r\}$, would be 0 on them and $x_{i}-c_{i}=0$, for all $i \in L$. If also a_{i}, $i \in\{1, \ldots, r\}$, satisfies the second condition of (2), then $G_{i j}$ would be 0 on $a=\left(a_{1}, \ldots, a_{r}\right)$.

Remark 33. Let S be a sudoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, r\}$. Let $I_{S}=I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ be the ideal associated to the sudoku S. Since $I_{S} \subset \mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$. We have $\left|\mathbb{V}\left(I_{S}\right)\right|<(m n)^{r}<\infty$ and I_{S} is a radical ideal. By Proposition 8,

$$
\left|\mathbb{V}\left(I_{S}\right)\right|=\operatorname{dim}_{\mathbb{C}}\left(\frac{\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]}{I_{S}}\right) .
$$

We want to find out when the solution is unique.

Proposition 34. Let $r=(m n)^{2}$. The following statements are equivalent:

- (1) $a=\left(a_{1}, \ldots, a_{r}\right)$ is the unique solution of the sudoku S.
- (2) $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}>$.
- (3) $\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}$ is a reduced Groebner basis of I_{S}.

Proof. See Prop. 25.
(1) \Longrightarrow (2) Since a is a solution $a \in \mathbb{V}\left(I_{S}\right)$. Since a is the unique solution $a=\mathbb{V}\left(I_{S}\right)$ because if there would exist $b \in \mathbb{V}\left(I_{S}\right)$, such that $b \neq a$, b would also be a solution of S which would contradict the unicity of a.

By Theorem 6, $\sqrt{I_{S}}=\square\left(\mathbb{V}\left(I_{S}\right)\right)$. Thus, $\sqrt{I_{S}}=\square(a)=<\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}>$. In particular, for $i \in\{1, \ldots, m n\}$, there exists $m_{i} \in \mathbb{N}$ such that $\left(x_{i}-a_{i}\right)^{m_{i}} \in I_{S}$. Therefore, $I_{S} \cap k\left[x_{i}\right]=$ $<\left(x_{i}-a_{i}\right)^{t}>$, for some $t \in \mathbb{N}$. But $t=1$ since the polynomials $F_{l}\left(x_{l}\right)$ are free of squares. Thus, $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}>$.
(2) \Rightarrow (3) We have to see that $\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}$ is a reduced Groebner basis. Let $G:=\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}$. It is easy to see that G is a Groebner basis since, for each pair (i, j), with $i \neq j$, the remainder of the division of $S\left(x_{i}-a_{i}, x_{j}-a_{j}\right)$ by G is 0 . Moreover, for each $i \in\{1, \ldots, r\}, L C\left(x_{i}-a_{i}\right)=1$ and no monomial of $x_{i}-a_{i}$ belongs to $<L T\left(G-\left\{x_{i}-a_{i}\right\}\right)>$, $<L T\left(G-\left\{x_{i}-a_{i}\right\}\right)>=<\left\{x_{j}, 1 \leq j \leq r, i \neq j\right\}>$. Thus, $\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}$ is a reduced Groebner basis of I_{S}.
(3) \Rightarrow (2) Since $\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}$ is a reduced Groebner basis of I_{S}, by Proposition 18, $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}>$.
(2) $\Rightarrow \Rightarrow$ (1) By Proposition 32 we know that the solutions of a sudoku are the zeroes of the ideal I_{S}. Thus, if $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{r}-a_{r}\right\}>$, then $\left(a_{1}, \ldots, a_{r}\right)$ is the unique solution.

6. SAGE CODES TO SOLVE A GENERALIZED SUDOKU

Let S be a generalized sudoku which is an $(m n) \times(m n)$ grid, $m, n \in \mathbb{N}, m, n \geq 2, m \leq n$.
(1) Let us construct E, the polynomials F_{i} and $G_{i j}$ and the ideal I generated by them.
\# the set E :
$R 1=\operatorname{Integers}(m)$
$t=m n$
$\mathrm{E}=[$]
for j in $[1, ., t]$:
for k in $[1, ., t]$:
$i=(j-1) * t+k$
$a=R 1(j)$
if $a=0$:
$a=m$
$R 2=\operatorname{Integers}(n)$
$b=R 2(k)$
if $b==0$:
$b=m$
\# Pairs (i, j) such that x_{i} and x_{j} belong to the same row:
for $l \operatorname{in}[k+1, ., t]$:
$E \cdot \operatorname{append}((i, i+l-k)$
\# Pairs (i, j) such that x_{i} and x_{j} belong to the same column:
for $l \operatorname{in}[j+1, ., t]:$
$E \cdot \operatorname{append}((i,(l-1) * t+k))$
\# Pairs (i, j) such that x_{i} and x_{j} belong to the same $m \times n$ block:
for $u \operatorname{in}[a, ., m]$:
for w in $[1, ., m]:$
if $i<((j-1)+(m-u)) * t+k-b+w$:
$E \cdot \operatorname{append}((i,((j-1)+(m-u)) * t+k-b+w)$
print(E)

\# Polynomials F_{i} :

$r=t * t$
$\mathrm{F}=[$]
variable $=[0]$
$P(x)=\operatorname{prod}([(x-j)$ for j in $[1, ., t]])$
for j in $[1, ., r]$:
variable.append(var('x’+ str(j)))
printP (variable[j])
\# Polynomials $G_{i j}$:
$\operatorname{var}(' y$ ')
$G(x, y)=(P(x)-P(y)) /(x-y)$
TheGij = [G(variable[a], variable[b]) for a, b in E]
(2) Now, we are going to construct the ideal I_{S}, generated by the polynomials F_{i}, $i \in\{1, \ldots, m n\}$, and $G_{i j},(i, j) \in E$, and by the polynomials corresponding to the preassigned values to the sudoku. In a matrix $(m n) \times(m n)$, the values not preassigned will be written as 0 .
\# Polynomials corresponding to the preassigned values:
def Preassigned(matrix)
polynomial = []
$t=m n$
$r=t * t$
for $i \operatorname{in}[0, ., t-1]$:
for $j \operatorname{in}[0, ., t-1]$:
if matrix[i,j] ! = 0
$k=i * t+(j+1)$

```
p = variable[k] - matrix[i, j]
polynomial.append(p)
return(polynomial)
T = PolynomialRing(QQ; ['x' + str(j) for j in [1,.,r]])
M = matrix(QQ; matrix[i, j] for i,j in [1,.,t])
L = Preassigned(M)
TheGij = [G(variable[a]; variable[b]) for a, b in E]
I = T.ideal(L + TheGij)
show(I·groebner_basis())
```


7. OTHER TYPES OF SUDOKU PUZZLES

Shidoku: It is a 4×4 grid divided into four 2×2 boxes where there are numbers between 1 and 4 in some of the squares in the grid (for example the bolded black below). To solve the puzzle we have to find the remaining numbers in such a way that every row and every column only contain the digits 1 to 4 and also every 2×2 box only contains those digits, without repetitions (for example the black below).

3	2	4	1
4	$\mathbf{1}$	2	3
2	3	1	4
$\mathbf{1}$	4	3	2

Let x_{1}, \ldots, x_{16} the 16 squares which form the shidoku S_{1}, arranged from left to right and from top to bottom. Its solution will be $\left(a_{1}, \ldots, a_{16}\right)$, where a_{i} is the number in the square associated to the variable x_{i}, with preassigned data $\left\{c_{i}\right\}_{i \in L_{1}}$, for $L_{1} \subset\{1, \ldots, 16\}$.

Remark 35. Let S be a shidoku with preassigned data $\left\{c_{i}\right\}_{i \in L}$, for $L \subset\{1, \ldots, 16\}$. Let $I_{S}=I+$ $<\left\{x_{i}-c_{i}\right\}_{i \in L}>$ be the ideal associated to the shidoku S, where I is the ideal generated by the polynomials $F_{i}, 1 \leq i \leq 16$, and $G_{i j},(i, j) \in E$, defined in a similar way to the ones in Definition 19 and Notation 21. $E=\{(i, j):$ for $1 \leq i<j \leq 16$ the ith and jth cells belong to the same row, column or 2×2 block $\}$.

Proposition 36. The following statements are equivalent:

- (1) $a=\left(a_{1}, \ldots, a_{16}\right)$ is the unique solution of the shidoku S.
- (2) $I_{S}=<\left\{x_{1}-a_{1}, \ldots, x_{16}-a_{16}\right\}$. $>$
- (3) $\left\{x_{1}-a_{1}, \ldots, x_{16}-a_{16}\right\}$ is a reduced Groebner basis of I_{S}.

Proof. Similar to the one of Prop. 25.

Several sudokus sharing 3×3 blocks

Let us denote the sudokus by $S_{j}, 1 \leq j \leq m$, arranged in such a way that some of them share a 3×3 block. Let S denote such a configuration with associated ideal I_{S}. Let $I_{S_{j}}$ be the ideal associated to the sudoku $S_{j}, 1 \leq j \leq m, 1 \leq a_{i j} \leq 9$. $I_{S_{j}} \subset k\left[\left\{x_{i j}\right\}_{i=1}^{81}\right]$. For each $j, 1 \leq j \leq m$,
let $\left\{x_{i j}-a_{i j}\right\}_{i=1}^{81}$, be a reduced Groebner basis of the ideal $I_{S_{j}}$. Then $\cup_{j=1}^{m}\left(\left\{x_{i j}-a_{i j}\right\}_{i=1}^{81}\right)$, is a reduced Groebner basis of the ideal $\sum_{j=1}^{m} I_{S_{j}} \subset k\left[\left\{\left\{x_{i j}\right\}_{i=1}^{81}\right\}_{j=1}^{m}\right]$, by Lemma 15. Notice that some of the $x_{i j}$ are equal to some $x_{k l}$ and that some of the $a_{i j}$ are equal to some $a_{k l}$ since some 3×3 blocks may be shared. Let us assume that, in S, we have g distinct $x_{i j}$ that we shall denote by y_{1}, \ldots, y_{g} and where b_{i} is the digit in $\{1, \ldots, 9\}$ associated to the variable y_{i}.

Proposition 37. The following statements are equivalent:

- (1) $b=\left(b_{1}, \ldots, b_{g}\right)$ is the unique solution of S.
- (2) $I_{S}=<\left\{y_{1}-b_{1}, \ldots, y_{g}-b_{g}\right\}>$.
- (3) $\left\{y_{1}-b_{1}, \ldots, y_{g}-b_{16}\right\}$ is a reduced Groebner basis of I_{S}.

Proof. Similar to the one of Prop. 25.

Three sudokus joined in diagonal

We have three sudokus $S_{i}, 1 \leq i \leq 3$, arranged in diagonal in such a way that S_{i} and S_{i+1}, $1 \leq i \leq 2$, share a corner 3×3 block.

Let x_{1}, \ldots, x_{81} the 81 squares which form the sudoku S_{1}, arranged from left to right and from top to bottom. Its solution will be (a_{1}, \ldots, a_{81}), where a_{i} is the number in the square associated to the variable x_{i}, with preassigned data $\left\{c_{i}\right\}_{i \in L_{1}}$, for $L_{1} \subset\{1, \ldots, 81\}$. Similarly, let y_{1}, \ldots, y_{81} the 81 squares which form the sudoku S_{2}, arranged from left to right and from top to bottom. Its solution will be (b_{1}, \ldots, b_{81}), where b_{i} is the number in the square associated to the variable y_{i}, with preassigned data $\left\{d_{i}\right\}_{i \in L_{2}}$, for $L_{2} \subset\{1, \ldots, 81\} . S_{1}$ and S_{2} share a 3×3 block; thus, $x_{54+l}=y_{6+l}$, $l=9 m+s, 1 \leq s \leq 3,0 \leq m \leq 2$.

Let z_{1}, \ldots, z_{81} the 81 squares which form the sudoku S_{3}, arranged from left to right and from top to bottom. Its solution will be (e_{1}, \ldots, e_{81}), where e_{i} is the number in the square associated to the variable z_{i}, with preassigned data $\left\{g_{i}\right\}_{i \in L_{3}}$, for $L_{3} \subset\{1, \ldots, 81\}$. S_{3} and S_{2} share a 3×3 block; thus, $y_{54+l}=z_{6+l}, l=9 m+s, 1 \leq s \leq 3,0 \leq m \leq 2$.

We consider the polynomial ring $R=\mathbb{C}\left[x_{1}, \ldots, x_{81}, y_{1}, \ldots, y_{81}, z_{1}, \ldots, z_{81}\right]$, with $x_{54+l}=y_{6+l}$, $y_{54+l}=z_{6+l}, l=9 m+s, 1 \leq s \leq 3,0 \leq m \leq 2$. Let $R_{1}=\mathbb{C}\left[x_{1}, \ldots, x_{81}\right], R_{2}=\mathbb{C}\left[y_{1}, \ldots, y_{81}\right]$, $R_{3}=\mathbb{C}\left[z_{1}, \ldots, z_{81}\right]$ be subrings of R.

Let $I_{S_{i}}$ be the ideals associated to the sudoku $S_{i}, 1 \leq i \leq 3 ; I_{S_{i}} \subset R_{i}, 1 \leq i \leq 3$.
Remark 38. The unique solution of the three sudokus is given by $\cap_{i=1}^{3} \mathbb{V}\left(I_{S_{i}}\right)=\mathbb{V}\left(\sum_{i=1}^{3} I_{S_{i}}\right)$. If each one of the sudokus has unique solution, $\left\{x_{i}-a_{i}\right\}_{i=1}^{81},\left\{y_{i}-b_{i}\right\}_{i=1}^{81},\left\{z_{i}-e_{i}\right\}_{i=1}^{81}$, are, respectively, reduced Groebner basis of the ideals $I_{S_{i}}, 1 \leq i \leq 3$, then, by Lemma 15, $\cup_{j=1}^{3}\left(\left\{x_{i}-a_{i}, y_{i}-b_{i}, z_{i}-e_{i}\right\}_{i=1}^{81}\right), a_{i}, b_{i}, e_{i} \in\{1, \ldots, 9\}, 1 \leq i \leq 81$, is a reduced Groebner basis of the ideal $\sum_{i=1}^{3} I_{S_{i}} \subset k\left[\left\{x_{i}, y_{i}, z_{i}\right\}_{i=1}^{81}\right]$, where $x_{(54+l)}=y_{(6+l)}, a_{(54+l)}=b_{(6+l)}$, and $y_{(54+l)}=z_{(6+l)}$, $b_{(54+l)}=e_{(6+l)}$, for $l=9 m+s, 1 \leq s \leq 3,0 \leq m \leq 2$; so it is the unique solution for the three of them, by Proposition 37.

It can be generalized to several sudokus $S_{i}, 1 \leq i \leq k$, arranged in diagonal in such a way that S_{i} and $S_{i+1}, 1 \leq i \leq k-1$, share a corner 3×3 block.

The preassigned data $\left\{c_{i}\right\}_{i \in L_{1}},\left\{d_{i}\right\}_{i \in L_{2}}$ and $\left\{g_{i}\right\}_{i \in L_{3}}$ are written in black in the example below (Figure 1).

Samurai Sudoku: It is composed of five sudokus joined in the shape of X. There is a central sudoku with four sudokus at the edges. Each shares a 3×3 block with the central sudoku.

Let us denote the five sudokus by $S_{j}, 1 \leq j \leq 5$, arranged in such a way that S_{3} is the sudoku at the center sharing a 3×3 block with $S_{j}, 1 \leq j \leq 4, j \neq 3$, the other four sudokus located at the corners of the central one.

Figure 1

Remark 39. The unique solution of the five sudokus is given by $\cap_{j=1}^{5} \mathbb{V}\left(I_{S_{j}}\right)=\mathbb{V}\left(\sum_{i=1}^{5} I_{S_{j}}\right)$. If each one of the sudokus has unique solution, for each $j, 1 \leq j \leq 5$, let $\left\{x_{i j}-a_{i j}\right\}_{i=1}^{81}$, be a reduced Groebner basis of the ideal $I_{j} \subset k\left[\left\{x_{i j}\right\}_{i=1}^{81}\right]$, then, by Lemma $15, \cup_{j=1}^{5}\left(\left\{x_{i j}-a_{i j}\right\}_{i=1}^{81}\right), a_{i j} \in\{1, \ldots, 9\}$, $1 \leq i \leq 81,1 \leq j \leq 5$, is a reduced Groebner basis of the ideal $\sum_{j=1}^{5} I_{j} \subset k\left[\left\{\left\{x_{i j}\right\}_{i=1}^{81}\right\}_{j=1}^{5}\right]$, where $x_{(54+l) 2}=x_{(6+l) 3}$ and $x_{(54+l) 3}=x_{(6+l) 5}$ and also $x_{(54+t) 1}=x_{l 3}, x_{(54+t) 3}=x_{l 4}$, for $l=9 m+s$, $1 \leq s \leq 3, t=9 m+v, 7 \leq v \leq 9,0 \leq m \leq 2$; thus it is the unique solution for the five of them, by Proposition 37.

The preassigned data are written in black in the example below (Figure 2).

Sohei sudoku (Figure 3)

It is composed of four sudokus forming a cross + arranged in such a way that each sudoku shares a 3×3 block with each one of the two adjacent ones.

Let us denote the four sudokus by $S_{j}, 1 \leq j \leq 4$, arranged in such a way that S_{1} shares a 3×3 block with S_{2} and S_{4}, S_{2} shares a 3×3 block with S_{3} and S_{1}, S_{3} shares a 3×3 block with S_{2} and S_{4}.

Remark 40. The unique solution of the four sudokus is given by $\cap_{j=1}^{4} \mathbb{V}\left(I_{S_{j}}\right)=\mathbb{V}\left(\sum_{i=1}^{4} I_{S_{j}}\right)$. If each one of the sudokus has unique solution, for each $j, 1 \leq j \leq 4$, let $\left\{x_{i j}-a_{i j}\right\}_{i=1}^{81}$, be a reduced Groebner basis of the ideal $I_{j} \subset k\left[\left\{x_{i j}\right\}_{i=1}^{81}\right]$, then, by Lemma $15, \cup_{j=1}^{4}\left(\left\{x_{i j}-a_{i j}\right\}_{i=1}^{81}\right), a_{i j} \in$ $\{1, \ldots, 9\}, 1 \leq i \leq 81,1 \leq j \leq 4$, is a reduced Groebner basis of the ideal $\sum_{j=1}^{4} I_{j} \subset k\left[\left\{\left\{x_{i j}\right\}_{i=1}^{81}\right\}_{j=1}^{4}\right]$, where $x_{(54+l) 1}=x_{(6+l) 4}$ and $x_{(54+l) 2}=x_{(6+l) 3}$, for $l=9 m+s, 1 \leq s \leq 3$, and also $x_{(54+t) 1}=x_{l 2}$, $x_{(54+t) 4}=x_{l 3}$, for $t=9 m+v, 7 \leq v \leq 9,0 \leq m \leq 2$; thus it is the unique solution for the four of them, by Proposition 37.

Figure 2

Figure 3

References

1. A. Delgado Latournerie, "Bases de Groebner y aplicaciones," Masters’ Thesis UAM, Madrid, Spain, 2016.
2. R. Hartshorne, Algebraic Geometry (Graduate Texts in Mathematiics), 52, Springer-Verlag, 1977; doi: 10.1007/978-1-4757-3849-0.
3. G McGuire, B. Tugemann, G. Civario, "There is no 16 -clue Sudoku: Minimum Number of Clues Problem," arXiv: 1201.0749 [cs.DS], Jan. 2012.
4. "Mathematics of Sudoku" in Wikipedia, Wikimedia Foundation, [Online]. Available: https://en. wikipedia.org/wiki/Mathematics-of-Sudoku-Minimum-number-of-givens.
5. "Magic Squares in Sudoku Grids," in Puzzling, Stack Exchange Inc. [Online]. https://puzzling. stackexchange.com/questions/6195/magic-squares-in-sudoku-grids?rq=1.

Received 12.04.2018, the final version - 10.05.2018.

Компьютерные инструменты в образовании, 2018
№ 3: 5-21
УДК: 512.62, 51-8, 519.813.7
http://ipo.spb.ru/journal
doi:10.32603/2071-2340-3-5-21

РЕШЕНИЕ СУДОКУ С ПОМОЩЬЮ БАЗИСОВ ГРЕБНЕРА

Гонзалез-Доррего М. Р.

Автономный университет Мадрида, Мадрид, Испания

Abstract

Аннотация Мы изучаем решение судоку и обобщенного судоку, используя технику базисов Грёбнера. Пусть x_{1}, \ldots, x_{81} переменные, связанные с 81 квадратами, которые образует головоломку судоку и линейно упорядочены сначала по строкам, затем по столбцам. Решение судоку есть набор чисел (a_{1}, \ldots, a_{81}), где a_{i} число в квадрате, ассоциированном с переменной x_{i}. Пусть также S - судоку с предварительно заполненными данными $\left\{c_{i}\right\}_{i \in L}$ для $L \subset\{1, \ldots, 81\}$. Вся необходимая информация для решения такого судоку содержится в алгебраическом множестве $\mathbb{V}\left(I+<\left\{x_{i}-c_{i}\right\}_{i \in L}>\right)$. Мы используем технику базисов Грёбнера для поиска такого решения и приводим соответсвующий код в системе компьютерной алгебры SAGE для программы, решающей эту задачу. Ключевые слова: судоку, обобщённое судоку, базис Грёбнера, алгебраическое многообразие. Цитирование: Gonzalez-Dorrego M. R. Resolution of Sudokus Using Groebner Basis // Компьютерные инструменты в образовании. 2018. № 3. С. 5-21.

Поступила в редакцию 12.04.2018, окончательный вариант - 10.05.2018.
Гонзалез-Доррего Мария Розарио, профессор, доктор, отделение математики, Автономный университет Мадрида, mrosario.gonzalez@uam.es

Gonzalez-Dorrego Maria Rosario, Departamento de Matemáticas Universidad Autónoma de Madrid; Ciudad Universitaria de Cantoblanco, 28049 Madrid, SPAIN
mrosario.gonzalez@uam.es

Our authors, 2018.
Наши авторы, 2018.

