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Abstract

We study the resolution of sudokus and generalized sudokus using Groebner basis. Let
X1,...,Xg1 the 81 squares which form the sudoku, arranged from left to right and from
top to bottom. Its solution will be (ay, ..., as1), where a; is the number in the square
associated to the variable x;.

Let S be a sudoku with preassigned data {c;};cr, for L < {1,...,81}. All the necessary
information to solve the sudoku is contained in the algebraic set V(I+ < {x; — ¢;}ier >).
We shall use Groebner basis to find a solution and give a SAGE code for that purpose.
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1. INTRODUCTION

A sudoku puzzle is a 9 x 9 grid divided into nine 3 x 3 boxes where there are numbers be-
tween 1 and 9 in some of the squares in the grid. To solve the puzzle we have to find the remain-
ing numbers in such a way that every row and every column only contain the digits 1 to 9 and
also every 3 x 3 box only contains those digits, without repetitions.The puzzle derives its name
from the japanese words Su, which means number and Doku, which means solitary. This puzzle
was popular in Japan since 1986 and it was in 2005 that it became internationally known. This
mathematical game had it origin in New York at the end of 1970 where it was known as ‘Number
Place’. It was published in a magazine called: “Math Puzzles and Logic Problems”.

A sudoku is a particular case of what is called a Euler square which is an 7 x n grid such that
each row and column of this grid must be filled with the 7 distinct numbers without repetitions.

A magic square is a 3 x 3 grid such that the sum of every row, column and diagonal equals
15. One can discuss the maximum number of magic squares that can appear in a unique solution
sudoku; for a discussion on this topic see [5].

The resolution of the sudoku can be seen as a problem of coloring the vertices of a plane
graph with 81 vertices such that two of them are adjacent if they belong to the same row, column
or 3 x 3 block. If we assign a different color to each of the 9 digits, vertices with the same color
cannot be adjacent which means that a digit cannot be twice in each row or each column or each
3 x 3 block.

Let xi,...,xg; the 81 squares which form the sudoku, arranged from left to right
and from top to bottom. Its solution will be (ay,...,as), where a; is the number in
thesquare associated to the variable x;. Let S be a sudoku with preassigned data {cj}ey,
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for Lc{1,...,81}. All the necessary information to solve the sudoku is contained in the algebraic
set V(I+ < {x; — ¢;}jer >). We also consider generalized sudokus. We shall use Groebner
basis to find a solution. Some of the results are based on the Masters’ Thesis of A. Delgado
Latournerie [1].

The minimum number of preassigned data c; for a unique solution sudoku is 17. This re-
sult was proven by McGuire-Tugemann-Civario [3] using computer software. For an interesting
reading on the subject, see [4].

The rate of difficulty of a sudoku is ranked using stars. One-star sudokus are very easy to
solve while a 5-star sudoku is very hard to solve. There is a famous sudoku, created by the
Finnish mathematician Arto Inkala in 2012, whose difficulty is ranked with 11 stars and it is
called Everest sudoku. We are not going to discuss here the definition of difficulty for a sudoku.

First we introduce some basic concepts on Algebraic Geometry and on Groebner basis. In 3
we solve sudokus using Groebner basis. In 4 we give SAGE codes for its resolution. In 5, 6 and 7
we study generalizations of sudoku puzzles.

2. BASIC CONCEPTS

Definition 1. Let R be a commutative ring. Let I R be an ideal of R.

o Let [ # R. I is a prime ideal of R if whenever abe€ I, either ac I or be I.

* Let ] be an ideal of R such that I < J. I is a maximal ideal if I = J or ] =R.
* Theradical of I is the ideal VI={a€R:a" €I, for someneN}.

« Iisaradical ideal if I = /1.

Definition 2. Let k[x1,...,Xx,] be a polynomial ring with coefficients in the field k. Let A" denote
the affine space of dimension n over k. For J c k[xy,...,x,] we define

V() ={PeA": f(P)=0,Vf€E ]}
V(/J) is called affine algebraic set.

Definition 3. Let Sc A", We define
10S) ={f € klxy,...,x5]: f(P)=0,VP € S}.

Properties

e V(0) =A™, V(k[xy,...,x,]) = @.

o I(@) =k[x1,...,xa], I(A™) =0.

e For J1 < J, V(J2) cV({J1).

» For §; < Sy, I(S2) < I(Sy).

* Let {S;}, j € ], be a collection of subsets of AR ZjEJI](Sj) =0(NjesSj).

« Let {J;}, i € I, be a collection of subsets of k[x1,..., X,]. Nie; V) = V(X ;e1 Ji)-

Definition 4. We define the Zariski topology in A" the topology whose closed sets are affine
algebraic sets.

Definition 5. An affine algebraic set S c A" is irreducible if, whenever S = S;US,, for S; < A",
1<i<2,8=8;0rS=S,. Anirreducible affine algebraic set is called an algebraic variety.

Theorem 6. Hilbert’s Nullstellensatz Let k be an algebraically closed field. Let U be an ideal in
klxy,..., x,). I(VAD) = VAL
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Proof. See [2; Th. 13A]. O

Proposition 7. Let k be an algebraically closed field. There is a one-to-one correspondence be-
tween the ideals of k[x,...,x,] and the sets of A" such that radical ideals of k[x,..., x,] cor-
respond to affine algebraic sets; the prime ideals of k[xy,..., xXn] correspond to algebraic varieties
and the maximal ideals of k([x1,..., x,] correspond to the points of A".

Proof. See[2;1.4,1.4.4]. O
Proposition 8. Let I c k[xy,...,X,] be an ideal such that V(I) is finite. Then,

@ V()] = dimy (Kazataly
* (b) Let k be an algebraically closed field. If I is a radical ideal, |V (I)| = dimk(M); that

. . . . e e . . . klx1,..., %]

is, the number of points of |V (I)|, counted with its multiplicity, is exactly dlmk(lf).
Proof. See [1; Prop. 5]. O
Definition 9. A monomial in the variables x1,..., x, is a product of the form x% = x1%,..., x,%",

with a = (ay,...,ay) € Zs¢". Anideal I c k[xy, ..., X,] is a monomial ideal if it admits a system
of generators which are monomials.

Definition 10. Let f =) , aox® a nonzero polynomial in k[x,..., X,]. Let > be a monomial or-
dering.

* The multidegree of f is multideg(f) = max{a € Z>y" : aq # 0}.

* The leading coefficient of f is LC(f) = Amultideg(f)-

* The leading monomial of f is LM(f) = x™148(1) with coefficient 1.
* Theleading term of f is LT (f) = Gmuttigeg(f) X" 19%8\/)

Definition 11. Let I c k[x3,...,X,] be a nonzero ideal. LT (I) denotes the set of the leading terms
of the elements of 1.

Definition 12. Let us fix a monomial ordering. A finite subset G = {g1,...,8:} of an ideal I c
k(xi,...,x,] is a Groebner basis if < LT(g1),...,LT(g;) >=< LT (I) >, where LT denotes the lead-
ing term as defined in Definition 10.

Definition 13. Let a = (a1,...,ay) and B = (B1,...,Bn) € Z>o". We say that a >« f and, thus,
that x® > xP, if the first nonzero term of the vector a — f is posittive.

Definition 14. A Groebner basis G is reduced, for a polynomial ideal I, if

« IC(f)=1,Vf€G.
» Forevery f € G,no monomialof fisin < LT(G—{f}) >.

Lemma 15. Let m, n€N, a;j €N. Foreach j, 1< j<m, let {x;j — a,-]-}l’.lzl, be a reduced Groebner
basis of the ideal I; < kl{x;;}!_,]. Then U;?lzl({xij—aij};?zl), aijeEN,1<sisn l<jsm,isa

reduced Groebner basis of the ideal Z;”:l Ij < kl{{xi ;.”:1].

Proof. Let m, n€N, a;; € N. By hypothesis, for each j, 1 < j <m, let {x;; — “ij}?:p aij €N, bea
reduced Groebner basis of the ideal I;; thus it satisfies the conditions of Definition 14. Since all
the monomials are linear, U;”zl({xij - a,-j};lzl), 1=<i=n,1=<j<m,isareduced Groebner basis
of the ideal Z;.”zlljck[{{xij}?zl};nzll- =
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Example 16. See [1; Ej. 12]. Let k = C.

Let [=<x’+y+z—1,x+y*+z-1,x+y+2z°—-1>.

A Groebner basis for I with respect to the lexicographical order can be calculated using the
mathematical software SAGE using the command .grobner_basis()

R.< x,y,z>=PolynomialRing(CC,3,order =' lex')
I=ideal(x*+y+z—1,x+y*+z-1,x+y+2z°-1)
I.grobner_basis()

We get
2

{z2+y+x— l,yz—y—z2+z,2yzz+z4—z ,
P-4zt +473- 7% ey
If we just want a Groebner basis obtained from the Buchberger we should use
I.grobner_basis('toy: buchberger’)
Thus, we obtain
{x2+y+z— 1,x+y2+z— 1,x+y+zz—1,y2—y—z2+z,
—yz4 - y22 —2z% 4228, —2yz2 -zt 4 z2, 28 —4z* +428 - 2% (2)
(1) and (2) generate the same ideal I.

Definition 17. Let f, g € klxy,...,x,] be two nonzero polynomials. Let multideg(f) = a,
multideg(g) = B. Let y; = max(a;, 8;), 1 < i< n.

* The monomial x" is the least common multiple of LM (f) and LM(g).
* The S-polynomial of f and g is
xY xY
f- 8-
LT(f) LT(g)

Proposition 18. Let I < k[x,...,X,] be a nonzero ideal. There exists a Groebner basis of I with
respect to every monomial order. Moreover, any Groebner basis of I is a system of generators of I.

S(f,8) =

Proof. See [1; Cor. 2]. O

3. RESOLUTION OF SUDOKUS USING GROEBNER BASIS

Let us consider the sudoku grid
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Let us denote by x1,..., xg; the 81 squares which form the sudoku, arranged from left to right
and from top to bottom. Its solution will be (ay,..., as1), where a; is the number in the square
associated to the variable x;. Let us consider the polynomial ring Clx;, ..., xg].

Definition19.  + (a) For 1 <i <81, let F;(x;) =[I}_, (x;i — k).
* (W Forl<i<;j=<8l,let

Gij(xi, xj) =

Fi(x;) = Fi(x})
——— e Qlxy, xj), with i # .

Xi—Xj

Remark 20. Note that F;(x;)—F;j(x;) is 0inV(x;—x;); thus (x;—Xx;) is a factor of F; (x;)—F;(x;) for
i # j. Moreover G;(x;, xj) is not divisible by (x; — x;), since, for x; = xj, G;j(xj, X;) = Flf(xi) which
is not 0 since F; is not constant. Also, if a;, a; are such that G;j(a;,a;) = 0 and Fi(a;) =0 = Fj(a;)
we would have that a; # aj, for, otherwise, G;j(a;,a;) = Flf(ai) # 0 because there would be a
summand ofFlf which would not be 0 in a; € {1,...,9}.

Notation 21. Let E ={(i,j) € T}

(i, j) € T when 1 <i < j <81 and the ith and jth cells belong to the same row, column or 3 x 3
block.

We consider the ideal I generated by the polynomials F;, 1 < i <81, and G;j, (i,j) € E. Let S
be a sudoku with preassigned data {c;}icr, for Lc {1,...,81}.

Remark 22. The ideal I+ < {x; — ¢;}jcr > is the ideal generated by 1U < {x; — ¢;};cr > and
V(I+ < {x; — citier >) = V) NV(< {x; — ¢itier >).
Proposition 23. The following statements are equivalent:

* (1) Let Lc{1,...,81}. We have a = (ay,...,ag1) € V(I+ < {x; — c;}jer, >, Where c; are certain
constants.
* 2 aiefl,..., 9%, foriefl,...,81}, with a; # aj, for (i, j) € E, and a; = c;, for all i € L.

Proof. See [1; Prop. 4].

(1) == (2) Let a € V(I+ < {x; — ¢j}jer >). Then F;(a;) =0, Vi € {1,...,81} and a; = cj, for all
i € L. Letus prove that a; # aj, for (i, j) € E. Let us assume that there is a pair (k, /) € E such that
ar = b = ay. Since Fi.(x) = F;(x7) + (x — x1) Gy (X1, X1), we obtain Fi(xy) = (x — b) Gy (x, b). If
Gr1(b, b) =0, we would obtain that b is a zero of Fy of multiplicity at least 2 which is impossible.

2= ) Ifforallie{l,...,81} a; satisfies the first condition of (2) and also a; = c;, for all
i € L, then every F;, i € {1,...,81}, would be 0 on them and x; —c; =0, for all i € L. If also a;,
i €{l,...,81}, satisfies the second condition of (2), then G;; would be 0 on a = (ay,..., ag). m|

Remark 24. Let S be a sudoku with preassigned data {ci}ie;, for L < {1,...,81}. Let
Is = I+ < {x; — cj}ier > be the ideal associated to the sudoku S. Since Is < C[xy,...,Xg1].
We have |V (Is)| < 98! < 0o and Is is a radical ideal. By Proposition 8,

Clxy,...,
IV (Ig)| = dime (S Yoy
Is

We want to find out when the solution is unique.

Proposition 25. The following statements are equivalent:
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* (1) a=(ay,...,as) is the unique solution of the sudoku S.
c Q) Is=<{x1—am,...,Xg1 — dg1} >.
e 3){x1—ay,...,xg1 — ag1} is a reduced Groebner basis of Is.

Proof. See [1; Prop. 6].

(1) == (2) Since a is a solution a € V(Ig). Since a is the unique solution a = V(Ig) because
if there would exist b € V(Ig), such that b # a, b would also be a solution of S which would
contradict the unicity of a.

By Theorem 6, /Is = I(V(Ig)). Thus, Is = (a) =< {x1 — ay,...,Xg1 — agi} > . In particu-
lar, for i € {1,...,81}, there exists m; € N such that (x; — a;)"™ € Is. Therefore, Is N k[x;] =
< (x; —a;)" >, for some t € N. But # = 1 since the polynomials F;(x;) are free of squares. Thus,
Is=<{x1—ay,...,xg1 —ag1}>.

(2) == (3) We have to see that {x; — ay,...,Xg1 — agi} is a reduced Groebner basis. Let
G:={x;—ay,...,xg1 — ag1}. It is easy to see that G is a Groebner basis since, for each pair (i, j),
with i # j, the remainder of the division of S(x; — a;, x; — a;) by G is 0. Moreover, for each
i €{l,...,81}, LC(x; — a;) = 1 and no monomial of x; — a; belongs to < LT (G — {x; — a;}) >,
< LT(G —{x; — a;}) >=<{x;,1 = j = 81,i # j} >. Thus, {x; —a,...,Xg1 — ag1} is a reduced
Groebner basis of Ig.

(3) = (2) Since {x; — ay,..., xg1 — ag1} is a reduced Groebner basis of Ig, by Proposition 18,
IS =<{x] —ai,..., Xg1 —6131} >,

(2) == (1) By Proposition 23 we know that the solutions of a sudoku are the zeroes of the
ideal Ig. Thus, if Is =< {x; — ay,..., xg1 — ag1} >, then (ay,..., ag)) is the unique solution. m|

4. SAGE CODES TO SOLVE A SUDOKU

See also [1, pp. 54-56].

(1) Let us construct E, the polynomials F; and G;; and the ideal I generated by them.
# the set E:
R =Integers(3)
E=[]
forjin[1,.,9]:
forkinll,.,9]:

i=(j-1)*9+k

a=R(j)
ifa==
a=3

b= R(k)
ifb==0:
b=3

# Pairs (i, j) such that x; and x; belong to the same row:
forlin[k+1,.,9]:
E-append((i,i+1—k)

10 © COMPUTER TOOLS IN EDUCATION. Ne3, 2018 r.
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# Pairs (i, j) such that x; and Xj belong to the same column:
forlin[j+1,.,9]:
E-append((i,(I-1) *9+ k))

# Pairs (i, j) such that x; and Xj belong to the same 3 x 3 block:
formin|a,.,3]:
fornin[l,.,3]:
ifi<((j-1D+@B-m)*9+k—-b+n:
E-append((i,(j -1+ (B3-m))*9+k—-b+n)
print(E)

# Polynomials Fj:

F=[]

variable = [0]

P(x) = prod([(x - j)for j in [1,.,9]])
forjinl[l,.,81]:

variable.append(var(‘x’+ str(j)))

printP (variable[j])

# Polynomials G;; :

var(‘y’)

Gx,y) = (PX) - P(Y)/(x- ¥)

TheGij = [G(variable[a], variable[b]) for a, b in E]

(2) Now, we are going to construct the ideal Ig, generated by the polynomials Fj,
i €{1,...,81}, and Gjj, (i, j) € E, and by the polynomials corresponding to the preassigned
values to the sudoku. In a matrix 9 x 9, the values not preassigned will be written as 0.

# Polynomials corresponding to the preassigned values:

def Preassigned(matrix)
polynomial =[]
foriinl0,.,8]:
for jinl0,.,8]:
if matrix[i,j]! =0
k=i*9+(j+1)
p = variable[k] - matrix([i, j]
polynomial.append(p)
return(polynomial)
T = PolynomialRing(QQ; [‘X’ + str(j) for j in [1,.,81]])
M = matrix(QQ; matrix([i, j] for i,j in [1,.,9])
L = Preassigned(M)
TheGij = [G(variable[a]; variable[b]) for a, b in E]
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I = T.ideal(L + TheGij)
show(I-groebner_basis())
U=1-groebner_basis()
N1=U[54:56]

N2=U[63:65]

N3=U[72:74]

N=N1+N2+N3

x=%X’ + str(j) for j in [1,.,81]
a="a’ + str(j) for j in [1,.,81]
def g(x-a)=a

show g(x-a) for x-ain N

Let us consider the following sudoku grid S
6 4

16 9
114
2 7 3 8

Let us calculate the Groebner basis of the ideal Ig
R = PolynomialRing(QQ; [‘X’ + str(j) for j in [1,..,811])

M = matrix(QQ; [[0, 0, 6, 0, 4, 0, 0, 0, 0], [0, 9, 0, 8, 0, 7, 0, 0, O],
[0,8,2,0,0,0,3,0,0][0,0,0,0,0,0,8,4, 0], [0,0,0,0,0,0,0, 6, 5]
[1,0,5,0,0,0,0,0,7]1[40,01,6,0,0,9, 3], [0,0,1,4,0,0,0, 0, 0],
[0,2,0,7,0,3,0,0,8]D

L = Preassigned(M)

TheGij = [G(variable[a]; variable[b]) for a; b in E]

I = Riideal(L + TheGij) Once L added, the polynomials F; are redundant.
show(I-groebner_basis())

[X1-3; x2—1; x3—6; X4 —2; X5 —4; X6 —5; X7 —7; Xg—8; X9—9; X10—5;
X11—9 X12—4 X138 X14—3; X15—7; X16 —6; Xx17—2; X185 —1; X19—7;
X20 = 8; X21—2; X2 —9; Xo3 — 1; X24 —6; Xo5—3; Xo6 —5; X27—4; X2g—9;
X29 —6; X30—3; X31 —5; X32—7; X33 — 1; X34 —8; X35 —4; X36 —2; X37—2;
X38 —7; X39 —8; X40 —3; X41 —9; X42 —4; X43—1; X44 —6; X45—5; X46—1;
X47 —4; X48 —5; X49 —6; X50 —8; X51 —2; X52 —9; X53—3; X54 —7; X55—4;
Xs56 —9; X57 — 75 Xs58 — 15 X59 —6; Xg0 — 8; Xe1 —2; X2 —9; X63 —3; Xea —8;

Xe5 —3; Xe6 — 1; X7 —4; Xeg —2; X69 —9; X70 —5; X71 —7; X72 —6;

12 © COMPUTER TOOLS IN EDUCATION. Ne3, 2018 r.
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X73 = 6; X74 =25 X75 = 9; X76 —7; X77 —9; X78 —3; X79 —4;
Xgo — 1; xg1 — 8]

The unique solution is:
(3,1,6,2,4,5,7,8,9,5,9,4,8,3,7,6,2,1,7,8,2,9,1, 6,
3,54,96,3,57,1,8,4,2,2,7,8,3,9,4,1,6,5,1,4, 5,

6,8,293,7,4,571,6,82,9,3,8,3,1,4,2,9,5,7,6,
6,2,9,7,5,3,4,1,8)
Notice that the solution is unique as it is known, by Proposition 8, (b), that

V(3| = dimc(ml"[—;'xm]) - 1.
If we solve it using the command “Sudoku()” of SAGE we obtain
sudoku(M)
S = Sudoku(M)
print(‘The number of solutions of this sudoku is:’)

len(list(S.d1x())) # It computes the number of solutions of this sudoku.

3|1|1612|4|5|7|8]|9
5/9(4|8|3|716|2|1
7181219|1|6|3|5|4
916|3|5]7]1]|8|4]|2
2|7|813|9|4|71|6]|5
114|5]6|8|219|3|7
4|/5/7|11(6(812]9]3
813|114|2|9]5|7|6
61219|7]|5[3]|4|1]|8

5. GENERALIZATIONS OF SUDOKU PUZZLES

Definition 26. We call a generalized sudoku an (mn) x (mn) grid, m, ne N, m, n = 2, divided
into m x n boxes where there are numbers between 1 and mn in some of the squares in the grid.
To solve the puzzle we have to find the remaining numbers in such a way that every row and every
column only contain the digits 1 to mn and also every m x n box only contains those digits, without
repetitions

Remark 27. * When m = n = 2 the generalized sudoku is called
Shidoku (see VII).

* When m =2 and n = 3 the generalized sudoku is called Roku sudoku.

* When m =2 and n = 4 the generalized sudoku is called Hachi sudoku.

* When m = 3 and n = 4 there is a type of generalized sudoku which uses the digits from 1
to 9 and the letters A, B and C instead of the digits 10, 11 and 12. This type is called Juuni
sudoku.

* When m = n = 4 there is a type of generalized sudoku which uses the digits from 1 to 9 and
the letters A, B, C, D, E, F and G instead of the digits 10, 11, 12, 13, 14, 15 and 16. This type is
called Supersudoku.
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Let r = (mn)?. Let x1,..., x, the r squares which form the sudoku, arranged from left to right
and from top to bottom. Its solution will be (a;,..., a;), where a; is the number in the square
associated to the variable x;. Let S be a generalized sudoku with preassigned data {c;};cy, for
Lc{l,...,r}. All the necessary information to solve the sudoku is contained in the algebraic set
V(I + < {x; —Citier >).

Definition 28. e(a) For 1 <= i < r, let Fi(x;)) = Hk’”:”l(x,- -k, k € {1,...,mn},
iefl,...,r}.
e (b)Forl<i<j<r,let

Fi(x;) — Fj(x;)

Gij(xi,xj) = € Qlx;, xj],with i # j.

i)
Remark 29. Note that F;(x;)—F;j(x;) is 0inV(x;—x;); thus (x;—x;) is a factor of F;(x;)—F;(x;) for
i # j. Moreover G;j(x;, xj) is not divisible by (x; — x;), since, for x; = xj, G;j(xj, X;) = Flf(xi) which
is not 0 since F; is not constant. Also, if a;, aj are such that G;j(a;,a;) = 0 and Fi(a;) =0 = Fj(a;)
we would have that a; # aj, for, otherwise, G;j(a;,a;) = Flf(ai) # 0 because there would be a
summand ofFlf which would not be 0 in a; € {1,...,mn}.

Notation 30. Let r = (mn)?. Let E = {(i, j) € T}.

(i,j) € Twhenl<i< j<r and theith and jth cells belong to the same row, column or m x n
block.

We consider the ideal I generated by the polynomials F;, 1 <i <r, and G;j, (i, j) € E. Let S be
a sudoku with preassigned data {c;}icr, for Lc{1,...,r}, r= (mn)2.

Remark 31. The ideal I+ < {x; —c;}jcr > is the ideal generated by 1U < {x; — ¢;};cr > and
VI + <{x; = citier >) = V) N V(< {X; — Citier >)
Proposition 32. Let r = (mn)?. The following statements are equivalent:

e (1) Let Lc{1,...,r}. We have a = (ay,...,a;) € V(I+ < {x; — cj};jer >, Where c; are certain
constants.
* 2)a;ell,...,mn}, fori€ll,...,r}, with a; # aj, for (i, j) € E, and a; = ¢;, for all i € L.

Proof. See Prop. 23.

(1) == (2) Let a € V(I+ < {x; — ¢j}jer >). Then F;(a;) =0, Vi € {1,...,r} and a; = c;, for all
i € L. Let us prove that a; # aj, for (i, j) € E. Let us assume that there is a pair (k, /) € E such that
ar = b = ay. Since Fy(x) = F;(x7) + (xx — x1) Gry (X1, X1), we obtain Fy(x) = (X — b) Gy (x, b). If
Gr1(b, b) =0, we would obtain that b is a zero of Fy of multiplicity at least 2 which is impossible.

2= (1) Ifforall i € {1,...,r} a; satisfies the first condition of (2) and also a; = c;, for all
i € L, then every F;, i € {1,...,r}, would be 0 on them and x; —c¢; =0, for all i € L. If also a;,
i€{l,...,r}, satisfies the second condition of (2), then Gij would be O on a = (ay,...,a,). O

Remark 33. Let S be a sudoku with preassigned data {c;}jc;, for L < {1,...,r}. Let
Is = I+ < {x; — cij}jer > be the ideal associated to the sudoku S. Since Ig < Clxy,...,x;]. We
have |V(Ig)| < (mn)" < oo and Ig is a radical ideal. By Proposition 8,

C[XI,...,Xr]

IV(Ig)| = dime(————).
Is

We want to find out when the solution is unique.
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Proposition 34. Let r = (mn)?. The following statements are equivalent:

* (1) a=(ay,...,a,) is the unique solution of the sudoku S.
e 2)Is=<{x1—ay,...,xr—ar}>.
* (3) {x1—ay,...,xr — a;} is areduced Groebner basis of Ig.

Proof. See Prop. 25.

(1) == (2) Since a is a solution a € V(Ig). Since a is the unique solution a = V(Ig) because
if there would exist b € V(Ig), such that b # a, b would also be a solution of S which would
contradict the unicity of a.

By Theorem 6, /Is = I(V(Is)). Thus, /Is = l(a) =< {x; — ay,..., X, — a,} >. In particular,
for i € {1,...,mn}, there exists m; € N such that (x; — a;)"™ € Is. Therefore, Isn k[x;] =
< (x; —a;)! >, for some t € N. But 7 = 1 since the polynomials F;(x;) are free of squares. Thus,
Is=<{x1—ay,....,xr—a;}>.

(2) == (3) We have to see that {x; — ai,...,X; — a,} is a reduced Groebner basis. Let
G:=1{x1—ay,...,x, — a,}. It is easy to see that G is a Groebner basis since, for each pair (i, j),
with i # j, the remainder of the division of S(x; — a;,x; — a;) by G is 0. Moreover, for each
i €{l,...,r}, LC(x; — a;) = 1 and no monomial of x; — a; belongs to < LT(G — {x; — a;}) >,
<LT(G—{x; — a;}) >=<{xj,1 < j<ri# j}> Thus, {x; —ai,...,x; — a,} is a reduced Groebner
basis of Is.

(3) == (2) Since {x; — ay,..., X — a,} is a reduced Groebner basis of Ig, by Proposition 18,
Is=<{x1—ay,...,.xr—a;}>.

(2) == (1) By Proposition 32 we know that the solutions of a sudoku are the zeroes of the
ideal Is. Thus, if Is =< {x; — ay,..., X — a;} >, then (ay,..., a;) is the unique solution. O

6. SAGE CODES TO SOLVE A GENERALIZED SUDOKU

Let S be a generalized sudoku which is an (mn) x (mn) grid, m,neN, m,n=2, m<n.
(1) Let us construct E, the polynomials F; and G;; and the ideal I generated by them.

# the set E:
R1 =Integers(m)
t=mn
E=[]
forjinll,., f]:
forkinll,. t]:

i=(-D=*t+k
a=R1())
ifa==0:
a=m

R2 =Integers(n)

b= R2(k)
ifb==0:
b=m

ALGORITHMIC MATHEMATICS AND MATHEMATICAL MODELING 15
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# Pairs (i, j) such that x; and x i belong to the same row:
forlin[k+1,.,¢]:

E-append((i,i+1—k)

# Pairs (i, j) such that x; and x; belong to the same column:
forlin[j+1,.,¢]:

E-append((i,(I-1) * t+ k))

# Pairs (i, j) such that x; and x; belong to the same m x n block:
foruinla,., m]:
forwinl1,.,m]:

fi<((j-D+m-u)*xt+k—-b+w:

E-append((i,(j-1)+(m—-w)*t+k—-b+w)
print(E)

# Polynomials F;:

r=txt

F=[]

variable = [0]

P(x) = prod([(x - j)for j in [1,.,t]])
forjinl[l,.r]:

variable.append(var(‘x’+ str(j)))

printP (variablel[j])

# Polynomials G;; :

var(y’)

G(xy) = (PX) - P(Y))/(X-Y)

TheGij = [G(variable[a], variable[b]) for a, b in E]

(2) Now, we are going to construct the ideal Ig, generated by the polynomials F;,

i €{l,...,mn}, and G;j, (i, ) € E, and by the polynomials corresponding to the preassigned
values to the sudoku. In a matrix (mn) x (mn), the values not preassigned will be written as 0.

# Polynomials corresponding to the preassigned values:
def Preassigned(matrix)
polynomial =[]
t=mn
r=txt
foriinl0,., t—1]:

for jinl0,., t—1]:

if matrix[i,j] =0

k=ixt+(j+1)

16
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p = variable[k] - matrix([j, j]
polynomial.append(p)

return(polynomial)

T = PolynomialRing(QQ; [‘x’ + str(j) for j in [1,.,r]])
M = matrix(QQ; matrix[j, j] for i,j in [1,.,t])

L = Preassigned(M)

TheGij = [G(variable[a]; variable[b]) for a, b in E]

I = T.ideal(L + TheGij)

show(I-groebner_basis())

7. OTHER TYPES OF SUDOKU PUZZLES

Shidoku: It is a 4 x 4 grid divided into four 2 x 2 boxes where there are numbers between 1
and 4 in some of the squares in the grid (for example the bolded black below). To solve the puzzle
we have to find the remaining numbers in such a way that every row and every column only
contain the digits 1 to 4 and also every 2 x 2 box only contains those digits, without repetitions
(for example the black below).

3129141
4 11123
213114
1149132

Let xy,..., x16 the 16 squares which form the shidoku S;, arranged from left to right and from
top to bottom. Its solution will be (ay,..., a1s), where a; is the number in the square associated
to the variable x;, with preassigned data {c;};er,, for Ly < {1,...,16}.

Remark 35. Let S be a shidoku with preassigned data {c;}ier, for L  {1,...,16}. Let Ig = I+
< {x; — c¢j}ieL > be the ideal associated to the shidoku S, where I is the ideal generated by the poly-
nomials F;, 1 <i <16, and G;jj, (i, j) € E, defined in a similar way to the ones in Definition 19 and
Notation 21. E={(i,j): for1 <1i < j <16 the ith and jth cells belong to the same row, column or
2x2blocks}.

Proposition 36. The following statements are equivalent:

* (1) a=(ay,...,a1) is the unique solution of the shidoku S.
* (2) Is=<{x1—ay,...,X16 — a16}. >
* 3){x1—ay,...,x16 — a1} is a reduced Groebner basis of Is.

Proof. Similar to the one of Prop. 25. m|

Several sudokus sharing 3 x 3 blocks

Let us denote the sudokus by Sj, 1 < j < m, arranged in such a way that some of them share
a 3 x 3 block. Let S denote such a configuration with associated ideal Is. Let Isj be the ideal
associated to the sudoku Sj, lsj=m 1< aij < 9. Is,- c k[{xij}?il]- For each j,1<j<m,
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let {xij — “ij}?ip be a reduced Groebner basis of the ideal Isj. Then u;”zl({x,-j — a,-j}?il), is a
reduced Groebner basis of the ideal Z;.":l IS]. c k[{{xij}?il};.il], by Lemma 15. Notice that some
of the x;; are equal to some xj; and that some of the a;; are equal to some ay; since some 3 x 3
blocks may be shared. Let us assume that, in S, we have g distinct x;; that we shall denote by
Y1,-.-,Yg and where b; is the digit in {1,...,9} associated to the variable y;.

Proposition 37. The following statements are equivalent:

* (1) b= (by,..., bg) is the unique solution of S.
e (2) Is=< {y1 —bl,...,yg—bg} >,
* 3) {y1—b1,...,yg — b6} is areduced Groebner basis of Is.

Proof. Similar to the one of Prop. 25. O

Three sudokus joined in diagonal

We have three sudokus S;, 1 < i < 3, arranged in diagonal in such a way that S; and S;;1,
1 <i <2, share a corner 3 x 3 block.

Let xy,..., xg1 the 81 squares which form the sudoku S;, arranged from left to right and from
top to bottom. Its solution will be (ay,..., ag;), where a; is the number in the square associated
to the variable x;, with preassigned data {c;};er,, for Ly < {1,...,81}. Similarly, let y1,..., yg1 the
81 squares which form the sudoku S,, arranged from left to right and from top to bottom. Its
solution will be (by, ..., bg1), where b; is the number in the square associated to the variable y;,
with preassigned data {d;} ;cr,, for Ly < {1,...,81}. S and S, share a 3x3 block; thus, X54+; = Ye+1,
[=9m+s,1<5s<3,0=m=<2.

Let z1,..., zg the 81 squares which form the sudoku S3, arranged from left to right and from
top to bottom. Its solution will be (ey, ..., eg1), where e; is the number in the square associated to
the variable z;, with preassigned data {g;};er,, for L3 {1,...,81}. S3 and S, share a 3 x 3 block;
thus, ys4+1 =26+, [=9M+5,1<5<3,0=sm<=<2.

We consider the polynomial ring R = C[xy,...,X81,Y1,..-,Y81,21,--.,281], With X5447 = V6+1,
Vsarl = 26+, L =9m+s5, 1 <s5s=<3,0<m=<2 Let R =Clxy,...,x81], R = Cly1,...,¥81],
R3 =Clz,,...,2g1] be subrings of R.

Let Is, be the ideals associated to the sudoku S;, 1 <i=<3; Is, cR;, 1 =i <3.

Remark 38. The unique solution of the three sudokus is given by ﬁ?zl\/(fsi) = \/(Z?zllsi).
If each one of the sudokus has unique solution, f{x;—a;}3!, {y;i—bi%l,, {zi—el?,
are, respectively, reduced Groebner basis of the ideals Is, 1 < i < 3, then, by Lemma 15,
Ui.:l({xi —a;,yi—bi, zi — ei}?il), a;, b;, e; €1{1,...,9}, 1 =i <81, is a reduced Groebner basis of
the ideal Y3_, Is, < kl{xi, yi, zi}oL |1, where Xsar1) = Yo+1) Asarl) = Do+, and Yarn = 2@+
biasn = e+, for l =9m+s,1<5<3,0=<m < 2; so it is the unique solution for the three of
them, by Proposition 37.

It can be generalized to several sudokus S;, 1 < i < k, arranged in diagonal in such a way that
S;jand S;4+1,1<1i< k-1, share a corner 3 x 3 block.

The preassigned data {c;}er,, {d;}icr, and {g;};c1, are written in black in the example below
(Figure 1).

Samurai Sudoku: It is composed of five sudokus joined in the shape of X. There is a central
sudoku with four sudokus at the edges. Each shares a 3 x 3 block with the central sudoku.

Let us denote the five sudokus by S;, 1 < j <5, arranged in such a way that S is the sudoku
at the center sharing a 3 x 3 block with S;, 1 < j <4, j # 3, the other four sudokus located at the
corners of the central one.
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11514123 /8(6|7|9
2171611591348
318|914 |6|7]|5]1]|2
411,2(3|8(6]7|/9]|5
613|579 |2|4|8]|1
819715111412 |3]|6
816[2|1|5|7|19|4|3|6|2|71]|8|5|7
9171412 (3|8|5|6|1|8|7[3]9|2|4
3/1(5]16(4|9|7|2|8]|9|4|5]|1|6]|3
718(13]9|1|2]6|5]|4
6(5|7|18[7(4]3|9]|2
412|936 |5]18|1]7
1148157912 |3|6]7[9|1|4|8|5
2/6|711(3|415[9|8|4|2|3|1|7]|6
3/5/9]12|6|8|1[4|7|5|8|6]2|3]|9
417111326859
5/8(214|19|1|16|7]|3
619|13|7|8|5|4|2|1
711416531982
812|5(9|1|7]|3|6|4
913/6|8(4|2]7]1]|5
Figure 1

Remark 39. The unique solution of the five sudokus is given by ni’.:l\/(lsj) = \/(Z‘;’:1 Is,). If each
one of the sudokus has unique solution, for each j, 1 < j <5, let {x;; — a; j}‘?il, be a reduced Groeb-
ner basis of the ideal I;  kl{x;;}}L,], then, by Lemma 15, U?zl({xij—aij}?il), aij € {1,...,9},
1=<i=<81,1=<j<5,is areduced Groebner basis of the ideal Z?Zl Ij c k[{{xij}?il}?zl], where
X54+02 = X(6+03 ANd X54+13 = Xe+n5 and also Xsa+n1 = Xi3, X(54+n3 = Xig, for I = 9m+s,
1=s=<3,t=9m+v,7<v=<9, 0= m=<2; thus it is the unique solution for the five of them,
by Proposition 37.

The preassigned data are written in black in the example below (Figure 2).
Sohei sudoku (Figure 3)

It is composed of four sudokus forming a cross + arranged in such a way that each sudoku
shares a 3 x 3 block with each one of the two adjacent ones.

Let us denote the four sudokus by Sj, 1 < j <4, arranged in such a way that S; sharesa 3 x3
block with S, and S4, S» shares a 3 x3 block with S3 and S1, S3 shares a 3 x3 block with S, and Sj4.

Remark 40. The unique solution of the four sudokus is given by m‘;zl\/(lsj) = \/(Z‘il:1 Is). If
each one of the sudokus has unique solution, for each j, 1 < j < 4, let {x;j—a; j}?il, be a re-
duced Groebner basis of the ideal I; < kl{x;;}%. 1, then, by Lemma 15, u‘]l.zl({x,-j —a;j¥8l), aije
{L,...,9}, 1 =i =81, 1 = j <4, is areduced Groebner basis of the ideal Y-3_, I; < k[{{xij}?il}j.:l],
where Xsa+1)1 = X@+n4 ANd Xa+72 = Xe+)3, Jor [ =9m+s, 1 < s <3, and also Xa+n1 = Xi2,
XGa+na = X3, for t =9m+v, 7<v <9, 0 =< m < 2; thus it is the unique solution for the four of
them, by Proposition 37.
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PEWUEHWE CYAOKY C NMOMOLLbK BASNCOB NrPEBHEPA

loH3anes-Joppero M. P.

ABTOHOMHBbI yHMBepcuTeT Magpuaa, Magpua, icnanus

AHHOTaUUsA

Mbl n3yyaem pelueHve CyAoky U 0606LLEHHOro CyAoKy, MCNonb3ys TexHWKy 6a3mcos
lpébHepa. MycTb Xi,...,Xg] NepeMeHHble, cBsidaHHble C 81 KkBajgpaTamu, KoTopble
obpa3syeT ronoBoAOMKY CYAOKY W NINHEHO YNopsAAOYeHbl CHauana no cTpokam, 3aTem no
ctonbuam. PewweHme cyaoky ectb Habop uucen (a,...,dsy), TAe a; YACIO B KBajparTe,
accouMMpoOBaHHOM C MepeMeHHOo X;.

MycTb TaKke S — CYAOKYy C NpeABapuTeNbHO 3aMnOJHEHHbIMU AaHHBLIMU {Ci}icr ANA
Lc{1,...,81}. Bca Heobxoaumas nHGopmMauma 418 peLleHns Takoro CyAoKy COAepXu-
TcA B anrebpavyeckom MHoxectBe V([+ < {x; — ci}jer >). Mbl ncnonb3yem TexXHUKY
6a3ncoB MpébHepa AN MOMCKa Takoro peLleHWs 1 NPYBOAUM COOTBETCBYHOLUNIA KOZA
B CYCTeMe KOMMbIoTEepHOW anrebpbl SAGE An1a nporpammel, peLuaroLeli 3Ty 3agaudy.

KnroueBble cnoBa: cyjoky, 0606wéHHoe cyAoKy, basuc [pébHepa, anrebpanyeckoe
MHOroobpaswe.
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