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Abstract

Evariste Galois’ last letter, addressed to Auguste Chevalier, on the eve of the (so-called)
duel on May 30, 1832 (which, perhaps, simpler and more accurately described by Alfred,
who did not allow a priest to deprive him from the final moments on the following day
with his elder brother Evariste, as murder), was written on seven pages and was divided
into three memoirs. The first memoir consumes a little less than two pages. It gave rise
to what has come to be known as Galois theory (as, in particular, told by Melvin Kiernan).
Yet Galois went on with stunningly amazing constructions in the second memoir, which
consumed a bit more than two pages. The third (and longest!) memoir begins on the
fifth page and remains mysteriously unresolved, yet it undoubtedly inspired Alexander
Grothendieck to formulate his period conjecture. The letter is concluded with a paragraph
on the latest “principal contemplations”, concerning “the applications of the theory of am-
biguity to transcendental analysis”, where Galois delivers his last puzzle to us, saying that
“one recognizes immediately lots of expressions to look for”. Unfortunately, the severity
of the time pressure upon him permitted only succinct last instructions with no more last
examples. Still and disgracefully, many “historians” keep on incessantly and mundanely
telling us (and each other) that we ought not “overestimate” the significance of the letter,
which was (contrary to their advice) eloquently and veraciously described by Hermann
Weyl as “the most substantial piece of writing in the whole literature of mankind”!
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The sections of the second memoir dealing with elliptic in-
tegrals were never written, nor, apparently, was any part of the
third memoir. The outline of this material in the letter to Cheva-
lier was very sketchy, and did not influence later mathematics.!

IThe quote concerns Galois’ last letter. It is taken from page 79 of a 154-page survey on [15, The Development of
Galois Theory from Lagrange to Artin] by M. B. Kiernan.
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1. AN ESSENTIAL ELLIPTIC FUNCTION AND ITS MODULAR INVARIANT

Given a parameter € C\{-1,0, 1}, introduce an essential elliptic function, as in [1, 2, 4, 6, 9],
that is a (meromorphic) function % = Zg = Z4(-) = Z(-, B), possessing a (double) pole at the
origin and satisfying the differential equation

R =A% (% +B) (2 +1/8). @

Denote the lattice of the function %g by Ag, and call the parameter f the elliptic modulus.
The map

2 (1,52, (),

extends, with 0 — (0,0, 1), to a map from the period-parallelogram C/Ag into the complex pro-
jective space PC?. The (extended) map induces, onto its image Ep, which we shall call the associ-
ated elliptic curve,” an isomorphism of Riemann surfaces, as well as, an isomorphism of groups.®
This map, further, enables an identification (exploiting the j-invariant) of isomorphism classes
of projective complex elliptic curves with homothety classes of lattices £/C*, which might, in
turn, be identified with the fundamental domain I'\.#, for the action of the modular group
I' := PSL(2, Z), upon the upper half plane ./, as is well explained in [17]. From now on, we ex-
ploit the identification of the points on the torus C/Ag, which might be viewed as the domain
of g, with the points on the elliptic curve Eg, which might be viewed as the image of the func-
tional pair (%p, ,_0}’3;3). Keeping in mind that the value of the function % g determines, up to a sign,
via equation (1), the value of its derivative %;3, we might further identify a pair of (not neces-
sarily distinct) points on Eg, sharing a first coordinate, with their corresponding pair of points
in the domain of £, which image (under %) coincide with that very first coordinate.

Fix the elliptic modulus S, and express the defining equation for the (already introduced) elliptic
curve Eg as

Ep: y*=4xq(x), g(x):=x*+(B+1/f) x+1.

The justification for such canonical representation of elliptic curves (not to be confused with
the Weierstrass normal form) is provided in the afore-indicated references [1, 2, 4, 6, 91.* Two
distinct points (x1, y1) and (xz, y») might be summed (on [Ep) to a point (x3, y3), which first coor-
dinate satisfy the addition formula

X3 2)

_ 1 (le/Z—sz’l )2

4 x1 X2 X1 — X2 )
Now, denoting by 7 - (x, y) the multiplication of the point (x, y) by n, and denoting by (n-x,n-
y) the n-multiple of the point (x, y) on [Eﬁ’ so that (n-x,n-y) = n-(x,y), the doubling formula
expresses the first coordinate 2 - x of the point 2 - (x, y), as calculated in [1],

2 2
) , g2 (x) 1= x q(x). 3)

= p2(x)

Go(x)’

) := 2
sz-—( 5

When 7 is an arbitrary integer, the multiplication by n amounts to successively multiplying by
its prime factors (counted with their respective multiplicities), so we want to deduce a multi-
plication by an odd prime formula. Assuming n to be odd (not necessarily prime!), exceeding

Zwithout, necessarily, further specifying whether the association pertains to the elliptic function %, its lattice Ag
or the elliptic modulus S.

3The curve Ep is, thereby, said to be a one-dimensional complex Lie group.

4We shall, furthermore, employ this representation for attaining an explicit inverse of the modular invariant.
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2, we might (recursively) deduce such a formula, expressing the first coordinate of the n-odd-
multiple point as a degree n? fractional transformation of the first coordinate of the point to be
multiplied, that is,

_ pn(x)
dn (x)

2 1V
n-x , Pn(x):=x" rn(;) , Gn(X) = rn(x)?,

—1)%(xgp_1(x)— pp-
ra(x):= (n—1) (xq 1) -p 1(x)), r(x):=1. 4)
nn—2)rp—2(x)

An explicit formula for 7 x relies on an explicit formula for (n—1)-x as a fractional transforma-
tion with (coprime) polynomials p,_; and g,-; appearing in its numerator and denominator,
respectively. Since 7 is odd, by assumption, the formula for (z — 1) - x might always be attained
via the doubling formula applied to ("T_l) - x. Note that the sequence {r, : n is odd} need not be
extended to include elements r, with even indices, unlike p, and g, which are (successively) de-
fined for all integer indices n (employing the doubling formula whenever the indices are even),
and that, furthermore, if we choose the polynomials g, to be monic for all even »n then so do
become all (subsequent) polynomials r, (and g,). The roots of each r, are precisely the first
coordinates of the points, aside from the identity point, on Eg, of order dividing 7, so, in par-
ticular, the degree of r,, is (n®> —1)/2, and if m divides n then the polynomial r,(x) divides the
polynomial r, (x).

The (monic) polynomial r,, which we have just introduced, has its coefficients in the field
F:=Q(B+1/p), thatis, the field of rational functions in the transcendental (or algebraic) element
B+ 1/, over the field of rational numbers Q.°> When 7 is an odd prime, as we now opt as being
the default assumption, the roots of r,, are the first coordinates of the points of order n on Eg. The
assumption which will not be lifted (throughout this paper) that % € C\ {0,1} guarantees that
the roots (of r,;) are pairwise distinct. We shall call the polynomial r, the division polynomial of
level n, and, whenever an emphasis on its dependence upon the elliptic modulus S is desired,
we shall denote it as r,(-, B), still being at large viewing it either as a function of two variables
or as a B-parametric polynomial function in a single variable.

The field F[y,,], obtained by adjoining a root vy, of r, to the base field [, is the splitting field
for the elliptic polynomial of level n:

(n=1)/2

Fan@i= [ (x=1¥m).

=1

The polynomial ry,, divides r,, and the first index (m) of r,,,, might be employed to designate
n+ 1 pairwise coprime elliptic polynomial factors of r:

n
rp(x) = 1_[ rmn(x)-G
m=0

Put d(x) := x— 1/x, and d?(x) := x+ 1/x — 2. Let d? denote the discriminant of the quadratic
polynomial g(x), which coincides with the discriminant of the cubic polynomial g»(x), so d? =
d(B)? = d*(%). The homothety class of the lattice Ag is represented by a (unique) point 7 in the

5No further restriction is imposed upon assuming that the coefficients of polynomials, in 8+ 1/, appearing in the
numerator and the denominator of a rational expression, in F, are integers.

5The elliptic polynomials were introduced in 2014 at the 7 annula PCA conference (http://pca.pdmi.ras.ru/2014/
program) in a talk titled “Modular Polynomial Symmetries”, and at the 17th workshop on computer algebra (http:
/[compalg.jinr.ru/Dubna2014/abstracts.html) in a talk titled “Elliptic and Coelliptic Polynomials”.
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fundamental domain I'\.#Z, as we already mentioned. The (Klein) modular invariant j, which
maps the upper half plane / onto C, is a modular form of weight zero. Its domain might be
extended to include all rational real points, as well as, the point at (complex) infinity. All these
points map (under j) to (complex) infinity. We shall emphasize that the modular invariant j is a
(holomorphic) bijection between the (or any) extended fundamental domain and the Riemann
sphere CUoco.” The domain of j might be further extended to include the lower half plane via
setting j(—7) = j(7). The value of j at a point 7, corresponding to the homothety class of the
lattice Ag is
a(da?+1)°
27d?
and since the said discriminant d? is invariant under the substitutions 8+— —f and §— 1/, so
must be j(7). Moreover, j(7) is invariant under the substitutions ,62 — 11— ﬁz. Thus, the homo-
thety class of the lattice Ag as B? undergoes the inversions (meaning linear fractional transfor-
mations of order 2)

j@= (5)

1
S:x——, T:x—1-x, (6)
X

is preserved. The latter two inversions generate a (6 element) group isomorphic with the sym-
metry group Ss of a triangle. The three functional (trigonometric) pairs

{—tanz, —cotz}, {sinz,cosz}, {cscz,secz}

might be viewed as the three vertices, which are rotated via either the composition So T or its
inverse ToS. The first vertex is invariant under the action of S which transposes the second ver-
tex with the third, while the second vertex is invariant under the action of T which transposes
the third vertex with the first, and the third is invariant under the action of the third inversion

SoToS=ToSoT:x— X

x—-1

which transposes the first vertex with the second. Generally, twelve distinct values of § corre-
spond to a single point 7 in the fundamental domain. The exceptions are the values, correspond-
ing to the corners of the fundamental domain. These are the six values f € {+i,+1/v/2,+ v/2},
corresponding to T = i := v/—1, and the four values 8 € {+i{, +i{?}, corresponding to 7 = {.® An
isomorphism between elliptic curves as their elliptic modulus 8 undergoes permissible trans-
formations (generated by S and T) might explicitly be given as a linear map between first co-
ordinates. Evidently, the isomorphism corresponding to the transformation  — 1/ is given by
the identity map x — x, and the isomorphism corresponding to the transformation § — —f is
given by the map x — —x. The isomorphism corresponding to the transformation § — /1 — 2
is given by the map x — —(Bx + 1)/ /1 — 2. Alternatively denoting the elliptic modulus § by
sin@,’ the latter map between first coordinates:

I(x) = —xtan0O —secl 7

is said to induce an isomorphism of elliptic curves, as the elliptic modulus § undergoes the
transformation sinf — cosf.'’

"The latter statement merely defines a modular form of weight zero.

8 A reformulation involving a (instead of §) would be less cumbersome, perhaps, and so we give it here. Generally,
six distinct values of @ correspond to a single point 7 in the fundamental domain. The exceptions are the three values
@ € {0,+1/ v/2}, corresponding to 7 = i, and the two values a € {+1/ v/3}, corresponding to 7 = (.

9The angle 6 is then called the modular angle.

100ne readily verifies that the inverse of the linear map [ is I} (x) = —xcot6 — csc@ correspond to the (reverse)
transformation of the elliptic modulus cosf — sin6.
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Since two elliptic moduli § and 1/ correspond to a single elliptic function %Zg (and to a
single elliptic curve Eg), only six elliptic functions &% correspond to twelve values of the ellip-
tic modulus, corresponding to a single point 7 in the fundamental domain. Only three distinct
functions % correspond to the exceptional value 7 = i, and only two distinct functions £ corre-
spond to the exceptional value T = (. The term elliptic modulus, endowed upon the parameter
B, is now seen to coincide with the same term appearing in connection with the Jacobi elliptic
functions. The Jacobi elliptic sine function, corresponding to elliptic modulus § and denoted by
sng = sng(-), satisfies the differential equation

snl'ﬁ2 = (1 - sn%) (1 - ﬁzsné),

and coincides, up to homothety and translation (of its argument), with a square root of the func-
tion Z (analytically continued). Explicitly,

2
z 1 mi
ﬁsnﬁ( \/B) = %—ﬁ(z) :‘%(‘Z+ \/BZOV_ﬁ)Jll 20 = W:

where M (x) is the arithmetic-geometric mean of 1 and x; enlightening details about the function
M are presented in [12]. As the elliptic modulus = sin@ undergoes the transformations, which
we earlier discussed, corresponding elliptic functions Z(:,—sin8), Z(-,itanf) and Z(-, —sec)
coincide, up to homothety, translation and multiplicative constants, with the squares of the Ja-
cobi elliptic functions sng, cng and dng. Putting x := 2icsc(20), the squares of the latter two
Jacobi elliptic functions might be, explicitly, expressed as

K
(2/ Vx, itanf) + itan®

Z+ 2

VK

cnﬁ(z)2 =1- Z = icot@%( , itan@),

sinftanf
R ( v —cosf z, —sec@) —secO

Respectively, they satisfy the differential equations:

dnﬁ(z)2:1+ 20030%(v—0030(z+z0),—seCH).

12 _ (1 _ o2 (1_p22 R2+n2) an’2 —[1_an2)(p2_ 2
cng = (1 cnﬁ) (1 B+ p cnﬂ), dnﬁ = (1 dnﬁ) (,B 1+dnﬁ),
as well as, the functional equations:
2 2 2 1= p2en2 2
sng+ceng=1= B snig + dnﬁ.
Here, one must also bear in mind a simple and basic functional equation:

R(iz, B) =—-R(z, —P).

2. AN EXPLICIT FAST INVERSION OF THE MODULAR INVARIANT
An explicit fast inverse k of the modular invariant j was given in [3] as a composition

k:= kooklokg,

HNote that the leftmost side of the equality is unaltered by switching from a branch of the square root function,
applied to §, in the expression for the argument of the (known to be odd) function sng, to the other.
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0 ’ M(x) ’ ! ) 2 ’ ) k3( ) 3 ’

3
k3(x):=\ Vx2-x3-x.

Strictly speaking, the function M is (doubly) infinitely-valued as its calculation entails choosing
one of two branches of the square root function at infinitely many steps. Consequently, the func-
tion k is, as well, an infinitely-valued function. However, its values, up to a sign, differ by the
action of the modular group I'. We mean that by flipping the sign, if necessary, we might assume
that the function k never assumes values in the lower half plane, and, furthermore, its values
might be brought via the action of the modular group I' to a single value in the (or any) funda-
mental domain. In other words, while k is not strictly a left inverse of j, it is a right inverse, that
is,
VxeC, jok(x)=x,"

for the modular invariant j does not separate points, in its domain, as long as they differ by
the action of the modular group I, and no troubles arise in extending the latter equality to the
whole Riemann sphere, including the point at (complex) infinity.

Before we move on to the modular equation, we must clarify the calculation of the inverse
function k for the two special values of j at the corners: j({) = 0 and j(i) = 1. So, we point
out that the (set) values of the composition, k; o k2 at 0 and 1, coincide with exceptional (set)
values of § at T = { and 7 = i, respectively. Certainly, k» has a removable singularity at zero and
must be evaluated to —1 there, whereas k(1) = 1/2. Thus, { € k(0) = kgo k;(—1), and i € k(1) =
k() o k] (1/2).13

An elementary proof of the fast inversion formula, being discussed here, is given in [16].

3. EXPLICITLY AND EFFICIENTLY SOLVING THE MODULAR EQUATION

Recalling our default assumption that 7z is an odd prime, the functional pair (j(7), j(nT)) is
known to be algebraically dependent (over @), and is said to satisfy the modular polynomial of
level n, that is

©,(j(1), j(n1)) =0,

where the modular polynomial ®, possesses integer (rational) coefficients. Moreover, as ex-
plained in [18], @, is symmetric in its two variables, that is @, (x,z) = ®,(z,x).'* When T is

12an analogy is afforded by a branch of the logarithmic function which is (regradless of the choice of the branch) a
right (but not left) inverse of the exponential function. While the values of the logarithm, at a given point, constitute a
discrete subset of a line, the values of the functions k and M do not. We have already indicated that the function M is
(doubly) infinitely-valued, suggesting that its values (at a given point) constitute a discrete subset of C (not contained
in any one-dimensinal subset over R), and so is the function k.

13Implying, unsurprisingly, that the values 0 and 1 are fixed by the (identity) function j o k.

14For a couple examples, the modular polynomials <D§‘ (x,y) and <I>; (x,y), of degrees 3 and 5, were calculated by
Smith (1879) and Berwick (1916), respectively:

i (x,y) = £y - 2232 (B3y? + k%) - x* - y* + 1069956 (xPy + xy3) - 2587918086 x?y* — 36864000 (x> + y3) -
8900222976000 (x2y+ yzx) —452984832000000 (x2 + yz) +770845966336000000 x y —1855425871872000000000 (x + y),

®ixy) = xOy5 — 3720 Byt + yAx0) + 4550940 (0y° + yPx3) — 1665999364600 x1y? — 2028551200 (x°y? +
y°x?) — 107878928185336800 (x*y3 + y*x3) — x® — y® + 246683410950 (x°y + y°x) — 383083609779811215375 (x*y? +
y4x2)  +  441206965512914835246100 x%y3 - 1963211489280 (x° + °) - 128541798906828816384000 (x*y +
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fixed, and so is j(7), the polynomial ®,(j(7),x) might be viewed as a polynomial in a single
variable x over the (base) field Q(j(r)),"> and we shall call its roots, the roots of the modular
equation of level n.

Now, let the value of j(7) be given by equation (5) then the values

. 4(d12n+1)3 2 2, 22 2 Sm(—P) — 5, (0)
IJm = W, dm =d (:Bm)’ ﬁm = sm(—I/,B)—sm(O)’ 0<m<n, ®)
2 '
5y () 1= X — 6x“+ax+2) rmn(x),16 (x::4(ﬁ+l),
T'mn(X) :3

are the (n+1) roots of the modular equation of level n.!” Evidently, each such root j,, is invariant
as ﬁfn is subjected to the action of the triangle group S3, which is generated by the two inversions
S and T given in (6). This action on ,Bfn corresponds to the action of S3 as the permutation group
of the three symbols {0, 8,1/}, appearing on the right hand side of the defining expression for
B2,. One might be satisfied to verify that a value of one of the roots j,, would coincide with
J(nt). The elliptic curves Eg and Eg,, are said to be related by cyclic isogeny of degree n.

The projective special linear group G, := PSL(2, Z,), where Z,, is the (prime) field of integers
modulo n (which we had earlier introduced), is the Galois group of the modular equation of
level n. Not merely a Galois group in the conventional sense, but is the Galois group in a most
spectacular sense. Galois, who was apparently the discoverer of finite fields, indicated, in his last
letter [13], sufficient and necessary condition for depressing the degree of the modular equation
of prime level.'® For this very purpose he did introduce the, being discussed, projective special
linear groups over prime fields G, and observed that they were simple for all primes strictly
exceeding the prime 3.'° For primes n = 5, he pointed out the three exceptions for which the
groups G possessed subgroups of indices coinciding with the cardinality of the field n. These

yx) - 26898488858380731577417728000 (x3y2  +  Px?) -  1284733132841424456253440 (x* + Y +
192457934618928299655108231168000 (x3 y + ¥3x) - 5110941777552418083110765199360000 x2y2
280244777828439527804321565297868800 (x3 + %) — 36554736583949629295706472332656640000 (x2y + y2x) -

6692500042627997708487149415015068467200 (x%  + yz) +  264073457076620596259715790247978782949376 x y = —
53274330803424425450420160273356509151232000 (x + y) —141359947154721358697753474691071362751004672000.
Our reason for using the asterisk is to point out that j(i) was assumed to equal 123. There is no sound justification
for this “popular choice”, and so if we switch to the “correct” normalization with j(i) = 1, then the corresponding
polynomials ®3(x, y) and ®5(x, y) become:
@3(x,y) = 2176782336 x33% — 2811677184 (x3% + y3x2) — 729 (x* + y*) + 779997924 (x3y + y3x) — 1886592284694 x%y2 —
15552000 (x3 + %) —3754781568000 (x?y + y%x) — 110592000000 (x2 + y%) + 188194816000000 x y —262144000000000 (x + ¥),
@5(x, y) = 8916100448256 x°y° — 19194382909440 (x°y* + y5x%) + 13589034024960 (x°y® + Ox3) -
4974647446705766400 x*y* — 3505336473600 (x°y% + y°x%) — 186414787904261990400 (x*y3 + y*x3) - 6
¥y + 246683410950 (x°y + y°x) — 383083609779811215375 (x*y> + y*x?) + 441206965512914835246100 x3y3 —
1136117760 (x> + y°) — 74387615108118528000 (x*y + y*x) — 15566255126377738181376000 (x3y% + 33x2) -
430254526762844160 (x4 + y4) + 64453772899964735127552000 (x3y + y3x) — 1711644060233550509015040000 x2y2 -
54313315434020926285414400 (x3 + ys) —7084552847250663218872320000 (x2y + yzx) — 750608416927050074633011200 (x% +
y2) +29617595563122405481849552896 x y —3457795560648760910413824000 (x + y) —5309626171273360722362368000.
Aided with computers, Andrew V. Sutherland went on to calculate the coefficients of three hundred modular polyno-
mials, which he made generously accessible at https://math.mit.edu/~drew/ClassicalModPolys.html.

1550, in fact, it might be viewed as a polynomial over the ring Z[j(7)].

16 A5 before, the prime mark denotes differentiation with respect to the argument x, as § is assumed to be fixed.

17More details are given in author’s article “Multiplication and division on elliptic curves, torsion points and roots
of modular equations”, which is accessible at http://www.ccas.ru/depart/mechanics/TUMUS/Adlaj/ECMD.pdf.

18The nowadays-established term “depressing” means lowering. Its conception is a simple (yet ingenious) idea with
which Galois alone must be fully credited, and, as we shall soon see, is the single most crucial (yet rarely brought to
awareness) step towards actually solving the quintic.

19The very concept of simplicity, being again introduced by Galois, provides the basic principle in classifying (finite)
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were the primes 5, 7 and 11. For any prime 7 strictly exceeding 11, proper subgroups of index
n+1, and no lower (as Galois had also shown), are guaranteed to exist in G,,. Equivalently said,’
a modular equation, of prime level n = 5, is depressible, from degree n + 1 to degree n (and no
lower), iff n € {5,7,11}. Via explicitly constructing a permutation representation for the three
exceptional groups, embedding them, respectively, in the three alternating groups As, A7 and
Aq1,%! Galois must, in particular, be solely credited for solving the general quintic via exhibiting
it as a modular equation of level 5.

4. AN APPLICATION: SOLVING THE QUINTIC

While Galois’ contribution for formulating sufficient and necessary criterion for solubility
of an algebraic equation via radicals was brought to light by Liouville, his decisive contribution
to actually solving the quintic (before Hermite and Klein did) is, surprisingly, too poorly rec-
ognized (if not at all unrecognised!).22 Betti, in 1851 [10], futily asked Liouville not to deprive
the public any longer of Galois’ (unpublished) results, and, in 1854 [11], went on to show that
Galois’ construction yields a solution to the quintic via elliptic functions.”® One might associate
with each quintic, given in Bring-Jerrard form, a corresponding value for the (Jacobi) elliptic
modulus B, as Hermite did, in 1858 [14], implementing this very Galois’ construction, which
time has come to clarify. The group Gs acts (naturally) on the projective line PZ5, which six ele-
ments we shall, following Galois, label as 0, 1, 2, 3, 4 and oco. Then collecting them in a triple-pair
{(0,00), (1,4), (2,3)}, the group Gs is seen to generate four more triple-pairs {(1,00), (2,0), (3,4)},
{(2,00), (3,1), (4,0)}, {(3,00), (4,2), (0,1)}, {(4,00), (0,3), (1,2)}. Together, the five triple-pairs con-
stitute the five-element set upon which Gjs acts.?* Galois did not (in his last letter) write down

groups. We note here that the projective special linear group is simple for all finite, not necessarily prime, fields
except the fields Z> and Z3. Galois, thereby, initiated the classification of finite simple groups, which referred to as
“an enormous theorem”, was (prematurely) announced in 1981 (by Daniel Gorenstein) before it was completed in
2004 (by Michael Aschbacher and Stephen Smith).

20The equivalence, of statement that follows to the few statements preceding it, was established by Galois.

2lpor n = 5,7,11, the subgroup of index n in Gy turns out to be isomorphic to A4, S4 and As, respectively. These
are precisely the symmetry groups of the platonic solids. The tetrahedron, being self-dual, has A4 as its symmetry
group. Sy is the symmetry group for the hexahedron and the octahedron, whereas As is the symmetry group for the
dodecahedron and the icosahedron.

22Galois’ brother Alfred and schoolmate Auguste Chevalier managed to involve Liouville (who was 135 weeks elder
to Galois) in disentangling the manuscripts, which they faithfully copied and forwarded to several mathematicians
(including Gauss and Jacobi). Liouville acknowledged in September 1843 that he “recognized the entire correctness
of the method”, which was, subsequently (in 1846), published in the Journal de Mathématiques Pures et Appliquées
XI, giving birth to Galois theory. Liouville declared an intention to proceed with publishing the rest of Galois’ papers.
Yet, most unfortunately, subsequent publication never ensued, and neither Gauss nor Jacobi has ever fulfilled Galois
modest request to merely announce the significance (tacitly alleviating the burden of judging the correctness) of
his (not necessarily published) contributions. In 1847, Liouville published (instead) his own paper “Lecons sur les
fonctions doublement périodiques”.

2311 1830, Galois competed with Abel and Jacobi for the grand prize of the French Academy of Sciences. Abel
(posthumously) and Jacobi were awarded (jointly) the prize, whereas all references to Galois’ work (along with the
work itself!) have (mysteriously) disappeared. The very fact that Galois’ lost works contained contributions to Abelian
integrals is either unknown (to many) or deemed (by some) no longer relevant to our contemporary knowledge. For
the sake of being fair to a few exceptional mathematicians, we must cite (without translating to English) Grothendick
(as a representative), who (in his autobiographical book Récoltes et Semailles) graciously admits that “Je suis per-
suadé d’ailleurs quun Galois serait allé bien plus loin encore que je n’ai été. D’une part a cause de ses dons tout a fait
exceptionnels (que je n’ai pas regus en partage, quant a moi).”

Z1ndeed, it is the five-element set (not merely a five-element set) which Hermite had no choice but to employ.
Galois’ construction for each of the two remaining cases, where n =7 or n = 11, allows an alternative, as will, next,
be exhibited.
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the four triple-pairs, which we did write after the first, and we now, guided by his conciseness
and brevity, confine ourselves to writing down only the first pair-set that he presented for each
of the two remaining cases, where n =7 and n = 11, respectively: {(0,00), (1,3), (2,6), (4,5)} and
{(0,00), (1,2), (3,6), (4,8), (5,10), (9,7)}. Unlike the case n =5, an alternative might be presented
for n =7, which is {(0,00), (1,5), (2,3), (4,6)}, and for n = 11, which is {(0,00), (1,6), (3,7), (4,2),
(5,8), (9,10)}. The absolute invariant for the action of the subgroup I',, of the modular group
T, consisting of linear fractional transformations congruent to the identity modulo 2, is 2. A
fundamental domain I';\/ for the action of I';, might be obtained by subjecting a fundamental
domain I'\.7 (of T) to the action of the quotient group I'/T = S3.%° In particular, §? viewed as
function on /2, is periodic, with period 2. The definition of the modular equation, initially in-
troduced for the invariant j, might be extended to other invariants such as B? or 4. Sohnke,
in a remarkable work [19], had determined the modular equations for /51/ 4, for all odd primes
up to, and including, the prime 19. That work, along with Betti’s work, inspired Hermite to (suc-
cessfully) relate a (general) quintic, in Bring-Jerrard form, to a modular equation of level 5, yet
he had little choice but to admit the importance of a sole Galois idea (in depressing the degree
of the modular equation).”® The modular polynomial for 84, of level 5, is

G5(x,1):=x8 =P+ 522 (2 - yP) +4xy 1 - xtyh, Y 9)

and the period of B/# (as an analytically continued function) is 16. Denoting the roots of
¢5(x, y = B/4(1)), for a fixed 7 € A, by

T+16m

J/5:ﬁ1/4(51’), ym:_ﬁ1/4 =

),05m54,

one calculates the minimal polynomial for x; := (y5 — ¥o) (ya — ¥1) (3 — ¥2) y. It turns out to be
x% —2000 8% (1 - %2 x+1600 V5 B2 (1 - 4 (1 + f2).
Thereby, a root of the quintic

2(1+ B 2(1+y8
X-x+c c:= a+p) A+y)

554\ /B- ) 554y2\/1—)B

is

V5cx; _ 5=y =y (3~ y2)

LA+F 5 5VBRA-pD 2y \/5vB0- )

25The latter quotient group coincides with G, which is isomorphic with S3.

26Hermite had apparently adopted Cauchy’s catholic and monarchist ideology, much in contrast to Galois’ passion-
ate rejection of social prejudice. In 1849, Hermite submitted a memoir to the French Academy of Sciences on doubly
periodic functions, crediting Cauchy, but a priority dispute with Liouville prevented its publication. Hermite was
then elected to the French Academy of Sciences on July 14, 1856, and (likely) acquainted, by Cauchy, with ideas stem-
ming from (but not attributed to) Galois “lost” papers. T. Rothman made a pitiful attempt in “Genius and Biographers:
The Fictionalization of Evariste Galois”, which appeared in the American Mathematical Monthly, vol. 89, 1982, pp.
84-106 (and, sorrowly, received the Lester R. Ford Writing Award in 1983) to salvage Cauchy’s reputation (unknow-
ingly) suggesting further evidence of Cauchy’s cowardice, and surprising us, along the way, with many (unusual but
ill substantiated and biased) judgements telling us much about T. Rothman himself, but hardly anything trustworthy
about anyone else!

27p diligent reader would notice a sign discrepancy in our equation once compared with the equation derived in
[19].

280ne must note that the constant coefficient ¢ is invariant under the inversions §— —1/f and g— (1— )/ (1 + f).
Here, the composition of the latter two inversions is another inversion. The corresponding four-point orbit in a
fundamental domain I')\# is generated via the mapping 7 — 2/(2 - 7).
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and so is expressible via the coefficients A,, and y,, of the elliptic polynomials 7,,5(x) =: x> —

AmX+ Um, 0 < m < 5. In fact, the polynomials r,,5 might be so ordered so that, for each m, the
value ﬁfn coincides with yfn. The (general) expression for ym = 2 , as given in (8), might be
rewritten for the special case n =5 as

yg _ SAm, Mm, ,3)
" B s(Am, imy 1B’

where

1 272
s(/l,p,x):( +)Lx )(4A+(i+4+5u)x+)t( +3)x +x)
p p p

and the coefficients A, =y, + 2+ yy) and y, = ym (2 - ym) satisfy

210

5
[T (x*=Amx+pm)=x"2+

m=0

1
—21x8—60x6—25x4—10x2+g+

92 x? x5 ad x®
+ax3(x8+4x6—18x4— 5 —7)+a2x4(€—3x —2) 5 =r5(x).

The roots y,, and 2-v,,, 0 < m < 5, of the division polynomial r5 might be highly efficiently
calculated via the algorithm, provided in [1]. Calculating a pair, say yo and ys, suffices, of course,
for calculating all twelve roots via applying the addition formula (2) along with the doubling
formula (3).

Let us conclude with a couple of examples, so let T =21, f = ( V2 - 1)2. The corresponding
quintic is

X’ —x+ M
5VV5

The corresponding division polynomial r5(x) factors over @[ v/5] into three quartic polynomial-
factors:

r5(x)=(x4+4(3+ \/5)x3+6(5+2\/§)x2—4(29+13\/§)x+9+4\/5)

5 5
Each (quartic) factor is an elliptic polynomial pair product. They are (with their argument omit-

(x4+ 18> +8—x+%)(x4+4(3— \/§)x3+6(5—2\/5)x2—4(29—13\/5)x+9—4\/5).

ted) 155750, 754751 and 153752, respectively. The (corresponding) modular polynomial (p5(x, y=

B4 =\ V2- 1) factors, over Q[y], into a quadratic and a quartic polynomial-factor:

¢s(x,y) = (x2+y_2)(x4+4y3(l—yzxz)x—2y4x2—y8),

and the six roots (of the modular polynomial) might be accordingly expressed and ordered:

¢\/_2+\/(; “xCy \/H 2_¢\/" 270

) )(( z)

:\/\/z(z_)\(/g)_ﬂ_l) mys_\/f 22+ V5) - 1) 4

) x(=1)

29The image of the square root is assumed, here (but not necessarily earlier!), to be unambigiously taken in the
right half-plane, including the boundary of the upper quadrant but excluding it for the lower quadrant.
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where

x€):=3+2 V5e.

Exploiting the identities
p=(va-1) =(vio-3)(v5-2)(3vZ+ v5-2),
AW =(vV5-2] =(3vZ+ V5+2)(3va- V2.
x(i))((—i)z(\/5+2)2:(3\/§+ V5-2)(3v2- V5+2),

along with the alternative expressions

" V-G+ Dy + /E-Dy(=0) y VEi-Dy@+ -G+ Dy (=)
0= ) = )
N ° NerE)
b= V2x(=0) _ V22
y =

) y - j]
\/(1+i)x(l)— \/(l—i))((—l) ° \/(l—i))((l)— \/(1+i))((—1)
one finds out that

X1 =-8 \/5,6,

and, so, a root of our quintic is
-8v56 -2
2\/5\/5/3(1—/32) Vv V10

Along the way, we might calculate the (five) discriminants

d*(BH = d*(B3) = d*(B3) =

32x(-1) 32)((1) 32 x(=i)
(ﬁo (1)5 ) (:62 )5’ (ﬁs ( )5

observing that they are sixth powers of the respective values

5516 V5-1  V5+1  V5+1  V5-1
’ 21/67((1)’ 21/6)((_1‘)’ 21/6)((1')’ 21/6)((_1)’

32x(1)
(=15’

, d*(B2) =

and, so using equation (5), we might calculate five special values of the modular invariant:

](51) ]0—(\/_+2) e 1)6(238\/_ 60\/7__) @)= ji = ]4_(11)’
1(51_1) jo=—(V5- 2) X (238\/_ 60\/>z+@)
](51+1) js=—(V5- 2) x(=0) (238\/_+60\/>z+—)

j(10i)=js=(\/5+2) @ (238\/_+60\/7 861)

30These special values might be expressed as cubes if one notes that v/5+2 = ( V5+ 1]3 /8
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We might now let 7 = i, B = /2, and observe that the modular polynomial <p5(x, y =B =

VvV V2 ) factors, over Q[y], into a quadratic and a quartic polynomial-factor:

s (x,y= V \@) = (2= y°x+y?) (2 =3p°x° =222 + yTx -y,
before confirming that the roots of the latter quartic polynomial-factor

e2vV5+1
V-]

are, respectively, obtainable as fourth roots of the values

VZ(eV5+2)
x(-e) '

y €= {1’ _i) ir _1}’

which, in turn, are (as they ought to be) the images of the four afore-calculated values By, B2, B3
and B5 (Where 8 was 3—2 v/2) if subjected to the (fourth order) linear fractional transformation

1+ Bm
1-Bm’

The four corresponding values of the discriminants are

me {0, 2, 3, 5}.

. 2(e2V5+2)"\  y(eF _32( 1€ )6
x(—€)? 2x(-e) V5-e2)
Two more special values of the modular invariant are calculated by (reapplying) formula (5) to

a discriminant from, firstly, the complex-conjugate (¢ = +1) pair, and, secondly, the real-valued
(€ ==1) pair:

3

(5i+1
J

3
_ (2927—1323 \/5) . (2927+1323 V5
2 - ’ - -~

2 2

One might infer, from equation (8), that the modular polynomial, of level 2, ®,(x, z) vanishes at

3
4 (d2+1)3 (d?+1)
(xr Zl) = E( d2 ) dlz ) lE {0: ]-;2};
where
a2, d2, d2) = 16( - d 4\, d=dp)=p—~
(()) 1’ 2)_ ﬁ»_ﬁyﬁ ’ - (ﬁ)_ﬁ_g’

For x € {jo, j2, j3, j5} we have already calculated the (two) corresponding values zy. Concluding,
we calculate the corresponding values z; and z, so put

V5+1

’(//(6,6) = W

(57272—340116 \/§+4(101 54636 \/E)ez V5 +

—18(800+ 1116 \/§+4(100+276 \/Z)ez \/E)e \/%) =
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(2 v5+1)*7

% (1 190448488 — 8585856998 V2 + 540309076¢% v/5 — 3745378805 €® V10 +

—e/ \/5(693172512 — 5957464146 v/2 + 40735742462 v/5 — 240819696 6 ¢ ﬂo) )

and observe that

3

4 (28Bdpn*? Bm
aUm) = E( B 24/3d(/3m)”3) =YL
. _ 4 28/3 2 d 2/3 3_ 1 3
22(jm) = > B d(Bm) +24/3[3md(/3m)”3 =y(le)7,

where € € {1, —i, i, —1} correspond, respectively, to m € {0, 2, 3, 5}, as before, and verify that

20i+5
17

(51 . 3 . . 3
](Z):Zl(jo)ZW(—l,l) , ]( ):Zl(]Z)ZW(_l)_Z) ’

[20i-5 ) N3 . , . 3
17 :Zl(]3) :'(,U(_l,l) ’ ](201) :Zl(]S) :1//(_1’_1) l}

(5i+2 , . . [(20i+4 . .

] :ZZ(]O) ZW(I’I) y J ZZZ(]Z):W(I)_Z) ’
4 13

(20i-4 ) .3 .(10i+1 ; 3
13 =203 =y (L0 J|—F—|=20s) =y,

Few of these special values were first presented in [5].

5. CONCLUSION

Nowadays, oblivion has entirely replaced marvelling at Galois key step, towards solving the
quintic, in depressing the degree of the modular equation, of level 5, from 6 to 5,>! and Galois
is merely mentioned, along with Abel, for determining that the quintic is not generally solvable
via radicals. With this paper, we hope that this (crippled) view of Galois (deeply constructive
and far from fully appreciated) theory would finally come to an end. A recent exapmle concerns
an expression, for “the speed of precession” of a freely moving triaxial rigid body, which attain-
ment relied on identifying the function field where such a general expression would lie, based
on exploring its symmetries [7]. Only a (minor) consequence of such Galois guided algebraic
approach, was identifying a Galois axis fixed within a triaxial rigid body and distinct from any
of its three main axes of inertia. Marvelously, Galois axis rotates uniformly during the critical
motion (whether or not such motion is said to be either stable or unstable and whether or not
the body “flips”), as shown in [8].

3lpor example, S. Vladut (wrongfully) attributes, in his book “Kronecker’s Jugendtraum and Modular Functions”
(published by Gordon and Breach in 1991), to Hermite showing the equivalence of the general quintic to the modular
equation of level 5.

ALGORITHMIC MATHEMATICS AND MATHEMATICAL MODELING 23



Agnaii C. ©.

References

1. S. F. Adlaj, "Iteratsionnyi algoritm vychisleniya ellipticheskogo integrala” [Iterative elliptic integral
algorithm], Zadachi issledovaniya ustoichivosti i stabilizatsii dvizheniya, pp. 104-110, 2011, [Online].
Available: http://www.ccas.ru/depart/mechanics/TUMUS/z_SBORNIKI/issues/2011_4Adlaj.pdf (in Rus-
sian).

2. S. Adlaj, "Eighth lattice points," arXiv:1110.1743 [math.GM], Oct. 2011.

. S. Adlaj, "An inverse of the modular invariant," arXiv:1110.3274 [math.GM], Oct. 2011.

4. S. Adlaj, "Mechanical interpretation of negative and imaginary tension of a tether in a linear paral-
lel force field," in Selected works of International Scientific Conference on Mechanics “Sixth Polyakhov
Readings,” St. Petersburg, Russia, Jan. 31-Feb. 3, 2012, pp. 13-18.

5. S. Adlaj, "Torsion points on elliptic curves and modular polynomial symmetries,” presented on at the
Joined MSU-CCRAS Computer Algebra Seminar, Moscow, Russia, Sep. 24, 2014 [Online]. Available: http:
/[www.ccas.ru/sabramov/seminar/lib/exe/fetch.php?media=adlaj140924.pdf.

6. S. Adlaj, "An analytic unifying formula of oscillatory and rotary motion of a simple pendulum," in
Special edition dedicated to the 70t birthday of J. J. Stawianowski, Sofia, Bulgaria: Avangard Prima,
2015, pp. 160-171.

7. S. Adlaj, "Dzhanibekov’s flipping nut and Feynman’s wobbling plate,” in Polynomial Computer Algebra
International Conference, St. Petersburg, Russia, Apr. 18-23 2016, pp. 10-14 [Online]. Available at http:
/[pca.pdmi.ras.ru/2016/abstracts_files/PCA2016SA.pdf.

8. S. F. Adlaj, S. A. Berestova, N. E. Misyura, and E. A. Mityushov "Illustrations of rigid body motion
along a separatrix in the case of Euler-Poinsot,"” Computer tools in education, no. 2, 2018, pp. 5-13;
doi:10.32603/2071-2340-2-5-13.

9. S. F. Adlaj, Ravnovesie niti v lineinom parallel’nom pole sil: Klassifikatsiya i issledovanie ustoichivosti
ravnovesnykh form niti v lineinom paralle’nom pole sil [Thread balance in a linear parallel field of
forces: Classification and study of the stability of the equilibrium forms of a thread in a linear parallel
field of forces], LAMBERT Academic Publishing, 2018.

10. E. Betti, "Sopra la risolubilita per radicali delle equazioni algebriche irriduttibili di grado primo,"
Dagli Annali di Scienze matimatiche e fisiche, II (Roma, 1851), pp. 5-19.

11. E. Betti, "Un teorema sulla risoluzione analitica delle equazioni algebriche," Dagli Annali di Scienze
matimatiche e fisiche, V (Roma, 1854), pp. 10-17.

12. D. Cox, "The arithmetic-geometric mean of Gauss," L’Enseignement Mathématique, vol. 30, 1984, pp.
275-330; doi:10.1007/978-3-319-32377-0_3.

13. E. Galois, "Lettre de Galois & M. Auguste Chevalier," Journal de Mathématiques Pures et Appliquées XI,
1846, pp. 408-415.

14. C. Hermite, "Sur la résolution de I’équation du cinquieme degré,” Comptes Rendus de ’Académie des
Sciences,, XLVI (I), 1858, pp. 508-515.

15. M. B. Kiernan, "The development of Galois theory from Lagrange to Artin. Communicated by M.
Kline," Arch. Rational Mech., vol. 8, no 1-2, 1971; doi:10.1007/BF00327219.

16. H. Ruhland, "The Inverse of the Modular Invariant,” [Online]. Available: http://www.ccas.ru/depart/
mechanics/TUMUS/Adlaj/Thelnverse.pdf.

17. J-P. Serre, A Course in Arithmetic, New York: Springer-Verlag, 1973.

18. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, NJ: Princeton
University Press, 1981.

19. L. A. Sohnke, "Aequationes modulares pro transformatione Functionum Ellipticarum," Journal fiir die
reine und angewandte Mathematik, vol. 16, 1837, pp. 97-130, [Online]. Available: http://eudml.org/doc/
146989

w

Received 19.06.2018, the final version — 26.07.2018.

24 © KOMMbKOTEPHBIE MHCTPYMEHTbI B OBPA3SOBAHWI. Ne4, 2018 .


http://www.ccas.ru/depart/mechanics/TUMUS/z_SBORNIKI/issues/2011_4Adlaj.pdf
http://www.ccas.ru/sabramov/seminar/lib/exe/fetch.php?media=adlaj140924.pdf
http://www.ccas.ru/sabramov/seminar/lib/exe/fetch.php?media=adlaj140924.pdf
http://pca.pdmi.ras.ru/2016/abstracts_files/PCA2016SA.pdf
http://pca.pdmi.ras.ru/2016/abstracts_files/PCA2016SA.pdf
http://www.ccas.ru/depart/mechanics/TUMUS/Adlaj/TheInverse.pdf
http://www.ccas.ru/depart/mechanics/TUMUS/Adlaj/TheInverse.pdf
http://eudml.org/doc/146989
http://eudml.org/doc/146989

O BTOpOM Memyape rnoc/iejHero nucbMa 3sapucra lanya

KomnbloTepHble MHCTPYMeHTbI B 06pa3oBaHuy, 2018
Ne 4:11-26

YAK: 511.238

http://ipo.spb.ru/journal
doi:10.32603/2071-2340-4-11-26

O BTOPOM MEMYAPE NOCNEAHETO NNCbMA 3BAPUCTA TATYA

Aanai C. ®.

®egepanbHblil HAYYHO-UCCNeA0BaTENLCKNIA LieHTP «/MHpopMaTuKa 1 ynpasneHue»
Poccuiickoin akagemum Hayk, MockBa, Poccus

AHHOTaUUSA

MocnegHee nuceMo 3Bapucta lanya, agpecosaHHoe Orwocty LleBanbe, HakaHyHe (Tak
Ha3blBaemoli) ayanu 30 mast 1832 roga (KoTopas, noxanyi, NpoLLe 1 TouHee 6bina oxa-
pakTep13oBaHa Kak youiicteo AnbppeaoMm, He JOMYCTBLUUM Ha CleAyroLni eHb CBS-
LLIeHHMKa K CBOeMy CTapLueMy bpaTy JBapuCTy B ero nociaejHne MrHoBeHus), 6bi1o Ha-
nMcaHo Ha ceMu CTPaHMLAX U pa3jeneHo Ha Tpy Memyapa. [epBblii Memyap 3aHUMaeT
YyTb MeHbLUe ABYX CTpaHWUL. BrocnegctBun celi MemMyap CTan n3BecTeH kak Teopus lMa-
nya (0 KOTOpOI, B YacTHOCTW, pacckazan MensuH KnpHaH). OgHako, Fanya npogonxun
CBOE& NMMUCbMO noTpscatoLLe YAUBUTEbHBIMU KOHCTPYKLMAMK BO BTOPOM MeMyape, KOTo-
pbIA 3aHsN YyTb Boslee ABYX CTpaHUL,. TpeTuii (1 camblil ANVHHBIN!) Memyap HavnHaeTcs
Ha MATON CTpaHuLe 1 0CcTaéTcs 3arafovHbIM 1 HepaclGpoBaHHbIM, HO OH, HECOMHEH-
HO, BAOXHOBWA AnekcaHgpa IpoTteHAnka cdopMyIMpoBaThb CBOK MMMOTe3y O Mepuogax.
MnceMo 3akaHuMBaeTcs ab3auem 0 NOCAEAHUX «TAaBHbIX Pa3MbILLIEHUAX», KacaroLLm-
XCA «MPUNOXKEHW TEOPUW HEOAHO3HAUYHOCTW K TPaHCLLeHAEHTHOMY aHanun3y», rae lanya
npenoAHOCUT HaM NOCNEAHIOK 3arajKy, FOBOPS, UTO «Mbl MOXEM TOTHYAC Xe paccMOoTpeTb
60/1bLLIOE MHOXECTBO BblpaxeHui». K coxaneHno, HeyMOANMOCTb jaBeoLlero Bpe-
MEHM He No3BO/NAAa eMy NPUBECTU KaKne-nMbo KOHKpPeTHbIe NMPrIMepbl, @ CMOr/1a ANLLb
JaTb KpaTKMe NocaejHNe NHCTPYKLMK, O TOM, YTO AenaTb C MMCbMOM. HecmoTps Ha 370,
MHOTVe «MCTOPUKIN» HA30MNNNBO 1 NPUMUTUBHO TBEPAAT HaM (U APYT APYrY), UTO Mbl He
JO/MKHBI «MNepeoLeHrBaTb» 3HaYeHne NcbMa, KOTopoe (Bonpekn nx coBetam) KpacHo-
peunBO 1 NpaBAMBO OMWCbIBaNOCh FfepMaHoOM Beiinem kak «camas 3HauMMas pykonuch
BO BCell UCTOPUM YenoBeyecTBa»!

KnioueBble coBa: 3cceHYManbHas SAANATUYECKass QYHKLUS, MOHVKEHNE CTEMEHN MO-
AYNIIPHOro ypaBHEHWs, MPOEKTUBHAS CrieLnaibHast INHEMHas rpynna Hagj npocTsiM fo-
J1IeM, SINMATUYECKNE U KOININATUYECKUE MOSINHOMbI, PELLIEHNE 06LLero KBUHTUYECKOro
YpaBHeHUS.

LuTtuposaHume: Adlaj S. F. On the Second Memoir of Evariste Galois' Last Letter //
KomnbloTepHble MHCTPYMeHTbI B 06pa3oBaHuun. 2018. Ne 4. C. 11-26. doi:10.32603/2071-
2340-4-11-26

Moctynuna B pegakuymto 19.06.2018, okoHYaTe/bHbIl BapnaHT — 26.07.2018.

Apnavi CeméH ®paHKOBUY, HayYHbliA COTPYAHUK, CEeKTop Teopuu ycToiium-
BOCTM M MeXaHWKWU ynpaBnsieMbiX cuctem, OTaeneHne MogennpoBaHus
CNOXKHbIX GU3NUECKUX U TEXHUYECKUX CUCTEM, BbIUMCAINTENbHBIA LLeHTp
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