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Abstract

Évariste Galois’ last letter, addressed to Auguste Chevalier, on the eve of the (so-called)

duel on May 30, 1832 (which, perhaps, simpler and more accurately described by Alfred,

who did not allow a priest to deprive him from the final moments on the following day

with his elder brother Évariste, as murder), was written on seven pages and was divided

into three memoirs. The first memoir consumes a little less than two pages. It gave rise

to what has come to be known as Galois theory (as, in particular, told by Melvin Kiernan).

Yet Galois went on with stunningly amazing constructions in the second memoir, which

consumed a bit more than two pages. The third (and longest!) memoir begins on the

fifth page and remains mysteriously unresolved, yet it undoubtedly inspired Alexander

Grothendieck to formulate his period conjecture. The letter is concluded with a paragraph

on the latest “principal contemplations”, concerning “the applications of the theory of am-

biguity to transcendental analysis”, where Galois delivers his last puzzle to us, saying that

“one recognizes immediately lots of expressions to look for”. Unfortunately, the severity

of the time pressure upon him permitted only succinct last instructions with no more last

examples. Still and disgracefully, many “historians” keep on incessantly and mundanely

telling us (and each other) that we ought not “overestimate” the significance of the letter,

which was (contrary to their advice) eloquently and veraciously described by Hermann

Weyl as “the most substantial piece of writing in the whole literature of mankind”!
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The sections of the second memoir dealing with elliptic in-

tegrals were never written, nor, apparently, was any part of the

third memoir. The outline of this material in the letter to Cheva-

lier was very sketchy, and did not influence later mathematics.
1

1
The quote concerns Galois’ last letter. It is taken from page 79 of a 154-page survey on [15, The Development of

Galois Theory from Lagrange to Artin] by M. B. Kiernan.
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1. AN ESSENTIAL ELLIPTIC FUNCTION AND ITS MODULAR INVARIANT

Given a parameter β ∈C\{−1,0,1}, introduce an essential elliptic function, as in [1, 2, 4, 6, 9],
that is a (meromorphic) function R = Rβ = Rβ(·) = R(·,β), possessing a (double) pole at the
origin and satisfying the differential equation

R′2 = 4R
(
R+β)(

R+1/β
)

. (1)

Denote the lattice of the function Rβ by Λβ, and call the parameter β the elliptic modulus.

The map

z 7→
(
1,Rβ(z),R′

β(z)
)

,

extends, with 0 7→ (0,0,1), to a map from the period-parallelogram C/Λβ into the complex pro-

jective space PC2
. The (extended) map induces, onto its image Eβ, which we shall call the associ-

ated elliptic curve,
2
an isomorphism of Riemann surfaces, as well as, an isomorphism of groups.

3

This map, further, enables an identification (exploiting the j -invariant) of isomorphism classes
of projective complex elliptic curves with homothety classes of lattices L /C×

, which might, in

turn, be identified with the fundamental domain Γ\H , for the action of the modular group

Γ := PSL(2,Z), upon the upper half planeH , as is well explained in [17]. From now on, we ex-

ploit the identification of the points on the torus C/Λβ, which might be viewed as the domain

ofRβ, with the points on the elliptic curve Eβ, which might be viewed as the image of the func-

tional pair (Rβ,R′
β

). Keeping in mind that the value of the functionRβ determines, up to a sign,

via equation (1), the value of its derivative R′
β
, we might further identify a pair of (not neces-

sarily distinct) points on Eβ, sharing a first coordinate, with their corresponding pair of points

in the domain ofRβ, which image (underRβ) coincide with that very first coordinate.

Fix the elliptic modulus β, and express the defining equation for the (already introduced) elliptic

curve Eβ as

Eβ : y2 = 4 x q(x), q(x) := x2 + (β+1/β) x +1.

The justification for such canonical representation of elliptic curves (not to be confused with

the Weierstrass normal form) is provided in the afore-indicated references [1, 2, 4, 6, 9].
4
Two

distinct points (x1, y1) and (x2, y2)might be summed (on Eβ) to a point (x3, y3), which first coor-
dinate satisfy the addition formula

x3 = 1

4 x1x2

(
x1 y2 −x2 y1

x1 −x2

)2

. (2)

Now, denoting by n · (x, y) the multiplication of the point (x, y) by n, and denoting by (n · x,n ·
y) the n-multiple of the point (x, y) on Eβ, so that (n · x,n · y) = n · (x, y), the doubling formula
expresses the first coordinate 2 · x of the point 2 · (x, y), as calculated in [1],

2 · x = p2(x)

q2(x)
, p2(x) :=

(
x2 −1

2

)2

, q2(x) := x q(x). (3)

When n is an arbitrary integer, the multiplication by n amounts to successively multiplying by
its prime factors (counted with their respective multiplicities), so we want to deduce a multi-

plication by an odd prime formula. Assuming n to be odd (not necessarily prime!), exceeding

2
Without, necessarily, further specifying whether the association pertains to the elliptic functionRβ, its latticeΛβ

or the elliptic modulus β.
3
The curve Eβ is, thereby, said to be a one-dimensional complex Lie group.
4
We shall, furthermore, employ this representation for attaining an explicit inverse of the modular invariant.

12 © COMPUTER TOOLS IN EDUCATION. №4, 2018 г.
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2, we might (recursively) deduce such a formula, expressing the first coordinate of the n-odd-
multiple point as a degree n2

fractional transformation of the first coordinate of the point to be

multiplied, that is,

n · x = pn(x)

qn(x)
, pn(x) := xn2

rn

(
1

x

)2

, qn(x) := rn(x)2,

rn(x) := (n −1)2
(
x qn−1(x)−pn−1(x)

)
n (n −2) rn−2(x)

, r1(x) :≡ 1. (4)

An explicit formula for n ·x relies on an explicit formula for (n−1)·x as a fractional transforma-
tion with (coprime) polynomials pn−1 and qn−1 appearing in its numerator and denominator,

respectively. Since n is odd, by assumption, the formula for (n −1) · x might always be attained
via the doubling formula applied to

(n−1
2

) · x. Note that the sequence {rn : n is odd} need not be
extended to include elements rn with even indices, unlike pn and qn which are (successively) de-

fined for all integer indices n (employing the doubling formula whenever the indices are even),
and that, furthermore, if we choose the polynomials qn to be monic for all even n then so do
become all (subsequent) polynomials rn (and qn). The roots of each rn are precisely the first

coordinates of the points, aside from the identity point, on Eβ, of order dividing n, so, in par-
ticular, the degree of rn is (n2 −1)/2, and if m divides n then the polynomial rm(x) divides the
polynomial rn(x).
The (monic) polynomial rn , which we have just introduced, has its coefficients in the field

F :=Q(β+1/β), that is, the field of rational functions in the transcendental (or algebraic) element
β+1/β, over the field of rational numbers Q.5 When n is an odd prime, as we now opt as being
the default assumption, the roots of rn are the first coordinates of the points of order n on Eβ. The
assumption which will not be lifted (throughout this paper) that β2 ∈ C\{0,1} guarantees that
the roots (of rn) are pairwise distinct. We shall call the polynomial rn the division polynomial of

level n, and, whenever an emphasis on its dependence upon the elliptic modulus β is desired,
we shall denote it as rn(·,β), still being at large viewing it either as a function of two variables
or as a β-parametric polynomial function in a single variable.

The field F[γm], obtained by adjoining a root γm of rn to the base field F, is the splitting field

for the elliptic polynomial of level n:

rm n(x) :=
(n−1)/2∏

l=1

(
x − l ·γm

)
.

The polynomial rm n divides rn , and the first index (m) of rm n might be employed to designate

n +1 pairwise coprime elliptic polynomial factors of rn :

rn(x) =
n∏

m=0
rm n(x).6

Put d(x) := x − 1/x, and d 2(x) := x + 1/x − 2. Let d 2
denote the discriminant of the quadratic

polynomial q(x), which coincides with the discriminant of the cubic polynomial q2(x), so d 2 =
d(β)2 = d 2(β2). The homothety class of the lattice Λβ is represented by a (unique) point τ in the

5
No further restriction is imposed upon assuming that the coefficients of polynomials, in β+1/β, appearing in the

numerator and the denominator of a rational expression, in F, are integers.
6
The elliptic polynomials were introduced in 2014 at the 7th

annula PCA conference (http://pca.pdmi.ras.ru/2014/

program) in a talk titled “Modular Polynomial Symmetries”, and at the 17th
workshop on computer algebra (http:

//compalg.jinr.ru/Dubna2014/abstracts.html) in a talk titled “Elliptic and Coelliptic Polynomials”.
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fundamental domain Γ\H , as we already mentioned. The (Klein) modular invariant j , which
maps the upper half plane H onto C, is a modular form of weight zero. Its domain might be

extended to include all rational real points, as well as, the point at (complex) infinity. All these

points map (under j ) to (complex) infinity. We shall emphasize that the modular invariant j is a
(holomorphic) bijection between the (or any) extended fundamental domain and the Riemann

sphere C∪∞.7 The domain of j might be further extended to include the lower half plane via
setting j (−τ) = j (τ). The value of j at a point τ, corresponding to the homothety class of the
lattice Λβ is

j (τ) = 4
(
d 2 +1

)3

27d 2 , (5)

and since the said discriminant d 2
is invariant under the substitutions β 7→ −β and β 7→ 1/β, so

must be j (τ). Moreover, j (τ) is invariant under the substitutions β2 7→ 1−β2
. Thus, the homo-

thety class of the lattice Λβ as β
2
undergoes the inversions (meaning linear fractional transfor-

mations of order 2)

S : x 7→ 1

x
, T : x 7→ 1−x, (6)

is preserved. The latter two inversions generate a (6 element) group isomorphic with the sym-

metry group S3 of a triangle. The three functional (trigonometric) pairs

{− tan2,−cot2}, {sin2,cos2}, {csc2, sec2}

might be viewed as the three vertices, which are rotated via either the composition S ◦T or its
inverse T ◦S. The first vertex is invariant under the action of S which transposes the second ver-
tex with the third, while the second vertex is invariant under the action of T which transposes
the third vertex with the first, and the third is invariant under the action of the third inversion

S ◦T ◦S = T ◦S ◦T : x 7→ x

x −1

which transposes the first vertex with the second. Generally, twelve distinct values of β corre-

spond to a single point τ in the fundamental domain. The exceptions are the values, correspond-

ing to the corners of the fundamental domain. These are the six values β ∈ {±i ,±1/
p

2,±p
2},

corresponding to τ= i := p−1, and the four values β ∈ {±i ζ, ±i ζ2}, corresponding to τ= ζ.8 An

isomorphism between elliptic curves as their elliptic modulus β undergoes permissible trans-

formations (generated by S and T ) might explicitly be given as a linear map between first co-
ordinates. Evidently, the isomorphism corresponding to the transformation β→ 1/β is given by
the identity map x 7→ x, and the isomorphism corresponding to the transformation β→−β is
given by the map x 7→ −x. The isomorphism corresponding to the transformation β→

√
1−β2

is given by the map x 7→ −(βx + 1)/
√

1−β2. Alternatively denoting the elliptic modulus β by

sinθ,9 the latter map between first coordinates:

l (x) =−x tanθ− secθ (7)

is said to induce an isomorphism of elliptic curves, as the elliptic modulus β undergoes the

transformation sinθ→ cosθ.10

7
The latter statement merely defines a modular form of weight zero.

8
A reformulation involving α (instead of β) would be less cumbersome, perhaps, and so we give it here. Generally,

six distinct values of α correspond to a single point τ in the fundamental domain. The exceptions are the three values

α ∈ {0,±1/
p

2}, corresponding to τ= i , and the two values α ∈ {±1/
p

3}, corresponding to τ= ζ.
9
The angle θ is then called the modular angle.

10
One readily verifies that the inverse of the linear map l is l−1(x) = −x cotθ− cscθ correspond to the (reverse)

transformation of the elliptic modulus cosθ→ sinθ.
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Since two elliptic moduli β and 1/β correspond to a single elliptic function Rβ (and to a

single elliptic curve Eβ), only six elliptic functions R correspond to twelve values of the ellip-

tic modulus, corresponding to a single point τ in the fundamental domain. Only three distinct

functionsR correspond to the exceptional value τ= i , and only two distinct functionsR corre-

spond to the exceptional value τ = ζ. The term elliptic modulus, endowed upon the parameter

β, is now seen to coincide with the same term appearing in connection with the Jacobi elliptic

functions. The Jacobi elliptic sine function, corresponding to elliptic modulus β and denoted by

snβ = snβ(·), satisfies the differential equation

sn′2
β =

(
1− sn2

β

)(
1−β2sn2

β

)
,

and coincides, up to homothety and translation (of its argument), with a square root of the func-

tionR (analytically continued). Explicitly,

βsnβ

(
z√
β

)2

= 1

R−β(z)
=R

(
z +

√
βz0,−β

)
,11 z0 := πi

2M(β)
,

whereM(x) is the arithmetic-geometric mean of 1 and x; enlightening details about the function
M are presented in [12]. As the elliptic modulus β= sinθ undergoes the transformations, which
we earlier discussed, corresponding elliptic functionsR(·,−sinθ),R(·, i tanθ) andR(·,−secθ)
coincide, up to homothety, translation and multiplicative constants, with the squares of the Ja-

cobi elliptic functions snβ, cnβ and dnβ. Putting κ := 2i csc(2θ), the squares of the latter two
Jacobi elliptic functions might be, explicitly, expressed as

cnβ(z)2 = 1− κ

R
(
z/

p
κ, i tanθ

)+ i tanθ
= i cotθR

(
z + z0p

κ
, i tanθ

)
,

dnβ(z)2 = 1+ sinθ tanθ

R
(p−cosθ z, −secθ

)
− secθ

= cosθR
(p

−cosθ (z + z0) , −secθ
)

.

Respectively, they satisfy the differential equations:

cn′2
β =

(
1−cn2

β

)(
1−β2 +β2cn2

β

)
, dn′2

β =
(
1−dn2

β

)(
β2 −1+dn2

β

)
,

as well as, the functional equations:

sn2
β+cn2

β ≡ 1 ≡β2sn2
β+dn2

β.

Here, one must also bear in mind a simple and basic functional equation:

R(i z, β) =−R(z, −β).

2. AN EXPLICIT FAST INVERSION OF THE MODULAR INVARIANT

An explicit fast inverse k of the modular invariant j was given in [3] as a composition

k := k0 ◦k1 ◦k2,

11
Note that the leftmost side of the equality is unaltered by switching from a branch of the square root function,

applied to β, in the expression for the argument of the (known to be odd) function snβ, to the other.
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where

k0(x) :=
i M

(p
1−x2

)
M(x)

, k1(x) :=
p

x +4− p
x

2
, k2(x) := 3

2

(
x

k3(x)
+k3(x)

)
−1,

k3(x) :=
3
√√

x2 −x3 −x.

Strictly speaking, the function M is (doubly) infinitely-valued as its calculation entails choosing

one of two branches of the square root function at infinitely many steps. Consequently, the func-

tion k is, as well, an infinitely-valued function. However, its values, up to a sign, differ by the
action of the modular group Γ. We mean that by flipping the sign, if necessary, we might assume

that the function k never assumes values in the lower half plane, and, furthermore, its values
might be brought via the action of the modular group Γ to a single value in the (or any) funda-

mental domain. In other words, while k is not strictly a left inverse of j , it is a right inverse, that
is,

∀x ∈C, j ◦k (x) = x,12

for the modular invariant j does not separate points, in its domain, as long as they differ by
the action of the modular group Γ, and no troubles arise in extending the latter equality to the

whole Riemann sphere, including the point at (complex) infinity.

Before we move on to the modular equation, we must clarify the calculation of the inverse

function k for the two special values of j at the corners: j (ζ) = 0 and j (i ) = 1. So, we point
out that the (set) values of the composition, k1 ◦ k2 at 0 and 1, coincide with exceptional (set)
values of β at τ= ζ and τ= i , respectively. Certainly, k2 has a removable singularity at zero and

must be evaluated to −1 there, whereas k2(1) = 1/2. Thus, ζ ∈ k(0) = k0 ◦k1(−1), and i ∈ k(1) =
k0 ◦k1(1/2).13

An elementary proof of the fast inversion formula, being discussed here, is given in [16].

3. EXPLICITLY AND EFFICIENTLY SOLVING THE MODULAR EQUATION

Recalling our default assumption that n is an odd prime, the functional pair ( j (τ), j (nτ)) is
known to be algebraically dependent (over Q), and is said to satisfy the modular polynomial of

level n, that is
Φn( j (τ), j (nτ)) ≡ 0,

where the modular polynomial Φn possesses integer (rational) coefficients. Moreover, as ex-

plained in [18], Φn is symmetric in its two variables, that is Φn(x, z) = Φn(z, x).14 When τ is

12
An analogy is afforded by a branch of the logarithmic function which is (regradless of the choice of the branch) a

right (but not left) inverse of the exponential function. While the values of the logarithm, at a given point, constitute a

discrete subset of a line, the values of the functions k andM do not. We have already indicated that the functionM is

(doubly) infinitely-valued, suggesting that its values (at a given point) constitute a discrete subset of C (not contained

in any one-dimensinal subset over R), and so is the function k.
13
Implying, unsurprisingly, that the values 0 and 1 are fixed by the (identity) function j ◦k.

14
For a couple examples, the modular polynomials Φ∗

3 (x, y) and Φ∗
5 (x, y), of degrees 3 and 5, were calculated by

Smith (1879) and Berwick (1916), respectively:

Φ∗
3 (x, y) = x3 y3 − 2232 (x3 y2 + x2 y3) − x4 − y4 + 1069956 (x3 y + x y3) − 2587918086 x2 y2 − 36864000 (x3 + y3) −

8900222976000 (x2 y + y2x)−452984832000000 (x2 + y2)+770845966336000000 x y −1855425871872000000000 (x + y),

Φ∗
5 (x, y) = x5 y5 − 3720 (x5 y4 + y4x5) + 4550940 (x5 y3 + y5x3) − 1665999364600 x4 y4 − 2028551200 (x5 y2 +

y5x2) − 107878928185336800 (x4 y3 + y4x3) − x6 − y6 + 246683410950 (x5 y + y5x) − 383083609779811215375 (x4 y2 +
y4x2) + 441206965512914835246100 x3 y3 − 1963211489280 (x5 + y5) − 128541798906828816384000 (x4 y +

16 © COMPUTER TOOLS IN EDUCATION. №4, 2018 г.
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fixed, and so is j (τ), the polynomial Φn( j (τ), x) might be viewed as a polynomial in a single
variable x over the (base) field Q( j (τ)),15 and we shall call its roots, the roots of the modular
equation of level n.
Now, let the value of j (τ) be given by equation (5) then the values

jm := 4
(
d 2

m +1
)3

27d 2
m

, d 2
m := d 2(β2

m), β2
m := sm(−β)− sm(0)

sm(−1/β)− sm(0)
, 0 ≤ m ≤ n, (8)

sm(x) := n x − (6 x2 +αx +2)r ′
m n(x)

rm n(x)
,16 α := 4

(
β+ 1

β

)
,

are the (n+1) roots of themodular equation of level n.17 Evidently, each such root jm is invariant

asβ2
m is subjected to the action of the triangle group S3, which is generated by the two inversions

S and T given in (6). This action on β2
m corresponds to the action of S3 as the permutation group

of the three symbols {0,β,1/β}, appearing on the right hand side of the defining expression for
β2

m . One might be satisfied to verify that a value of one of the roots jm would coincide with

j (nτ). The elliptic curves Eβ and Eβm are said to be related by cyclic isogeny of degree n.
The projective special linear groupGn := PSL(2,Zn), whereZn is the (prime) field of integers

modulo n (which we had earlier introduced), is the Galois group of the modular equation of
level n. Not merely a Galois group in the conventional sense, but is the Galois group in a most
spectacular sense. Galois, whowas apparently the discoverer of finite fields, indicated, in his last

letter [13], sufficient and necessary condition for depressing the degree of the modular equation

of prime level.
18
For this very purpose he did introduce the, being discussed, projective special

linear groups over prime fields Gn , and observed that they were simple for all primes strictly

exceeding the prime 3.
19
For primes n ≥ 5, he pointed out the three exceptions for which the

groups Gn possessed subgroups of indices coinciding with the cardinality of the field n. These

y4x) − 26898488858380731577417728000 (x3 y2 + y3x2) − 1284733132841424456253440 (x4 + y4) +
192457934618928299655108231168000 (x3 y + y3x) − 5110941777552418083110765199360000 x2 y2 −
280244777828439527804321565297868800 (x3 + y3) − 36554736583949629295706472332656640000 (x2 y + y2x) −
6692500042627997708487149415015068467200 (x2 + y2) + 264073457076620596259715790247978782949376 x y −
53274330803424425450420160273356509151232000 (x + y)−141359947154721358697753474691071362751004672000.

Our reason for using the asterisk is to point out that j (i ) was assumed to equal 123
. There is no sound justification

for this “popular choice”, and so if we switch to the “correct” normalization with j (i ) = 1, then the corresponding
polynomials Φ3(x, y) and Φ5(x, y) become:
Φ3(x, y) = 2176782336 x3 y3 − 2811677184 (x3 y2 + y3x2) − 729 (x4 + y4) + 779997924 (x3 y + y3x) − 1886592284694 x2 y2 −
15552000 (x3 + y3)−3754781568000 (x2 y + y2x)−110592000000 (x2 + y2)+188194816000000 x y −262144000000000 (x + y),

Φ5(x, y) = 8916100448256 x5 y5 − 19194382909440 (x5 y4 + y5x4) + 13589034024960 (x5 y3 + y5x3) −
4974647446705766400 x4 y4 − 3505336473600 (x5 y2 + y5x2) − 186414787904261990400 (x4 y3 + y4x3) − x6 −
y6 + 246683410950 (x5 y + y5x) − 383083609779811215375 (x4 y2 + y4x2) + 441206965512914835246100 x3 y3 −
1136117760 (x5 + y5) − 74387615108118528000 (x4 y + y4x) − 15566255126377738181376000 (x3 y2 + y3x2) −
430254526762844160 (x4 + y4) + 64453772899964735127552000 (x3 y + y3x) − 1711644060233550509015040000 x2 y2 −
54313315434020926285414400 (x3 + y3) − 7084552847250663218872320000 (x2 y + y2x) − 750608416927050074633011200 (x2 +
y2)+29617595563122405481849552896 x y −3457795560648760910413824000 (x + y)−5309626171273360722362368000.

Aided with computers, Andrew V. Sutherland went on to calculate the coefficients of three hundred modular polyno-

mials, which he made generously accessible at https://math.mit.edu/~drew/ClassicalModPolys.html.

15
So, in fact, it might be viewed as a polynomial over the ring Z[ j (τ)].

16
As before, the prime mark denotes differentiation with respect to the argument x, as β is assumed to be fixed.

17
More details are given in author’s article “Multiplication and division on elliptic curves, torsion points and roots

of modular equations”, which is accessible at http://www.ccas.ru/depart/mechanics/TUMUS/Adlaj/ECMD.pdf.

18
The nowadays-established term “depressing” means lowering. Its conception is a simple (yet ingenious) idea with

which Galois alone must be fully credited, and, as we shall soon see, is the single most crucial (yet rarely brought to

awareness) step towards actually solving the quintic.

19
The very concept of simplicity, being again introduced by Galois, provides the basic principle in classifying (finite)
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were the primes 5, 7 and 11. For any prime n strictly exceeding 11, proper subgroups of index
n+1, and no lower (as Galois had also shown), are guaranteed to exist inGn . Equivalently said,

20

a modular equation, of prime level n ≥ 5, is depressible, from degree n +1 to degree n (and no
lower), iff n ∈ {5,7,11}. Via explicitly constructing a permutation representation for the three
exceptional groups, embedding them, respectively, in the three alternating groups A5, A7 and

A11,
21
Galois must, in particular, be solely credited for solving the general quintic via exhibiting

it as a modular equation of level 5.

4. AN APPLICATION: SOLVING THE QUINTIC

While Galois’ contribution for formulating sufficient and necessary criterion for solubility

of an algebraic equation via radicals was brought to light by Liouville, his decisive contribution

to actually solving the quintic (before Hermite and Klein did) is, surprisingly, too poorly rec-

ognized (if not at all unrecognised!).
22
Betti, in 1851 [10], futily asked Liouville not to deprive

the public any longer of Galois’ (unpublished) results, and, in 1854 [11], went on to show that

Galois’ construction yields a solution to the quintic via elliptic functions.
23
One might associate

with each quintic, given in Bring-Jerrard form, a corresponding value for the (Jacobi) elliptic

modulus β, as Hermite did, in 1858 [14], implementing this very Galois’ construction, which

time has come to clarify. The group G5 acts (naturally) on the projective line PZ5, which six ele-

ments we shall, following Galois, label as 0, 1, 2, 3, 4 and∞. Then collecting them in a triple-pair
{(0,∞), (1,4), (2,3)}, the group G5 is seen to generate four more triple-pairs {(1,∞), (2,0), (3,4)},
{(2,∞), (3,1), (4,0)}, {(3,∞), (4,2), (0,1)}, {(4,∞), (0,3), (1,2)}. Together, the five triple-pairs con-
stitute the five-element set upon which G5 acts.

24
Galois did not (in his last letter) write down

groups. We note here that the projective special linear group is simple for all finite, not necessarily prime, fields

except the fields Z2 and Z3. Galois, thereby, initiated the classification of finite simple groups, which referred to as

“an enormous theorem”, was (prematurely) announced in 1981 (by Daniel Gorenstein) before it was completed in

2004 (by Michael Aschbacher and Stephen Smith).

20
The equivalence, of statement that follows to the few statements preceding it, was established by Galois.

21
For n = 5,7,11, the subgroup of index n in Gn turns out to be isomorphic to A4, S4 and A5, respectively. These

are precisely the symmetry groups of the platonic solids. The tetrahedron, being self-dual, has A4 as its symmetry

group. S4 is the symmetry group for the hexahedron and the octahedron, whereas A5 is the symmetry group for the

dodecahedron and the icosahedron.

22
Galois’ brother Alfred and schoolmate Auguste Chevalier managed to involve Liouville (who was 135 weeks elder

to Galois) in disentangling the manuscripts, which they faithfully copied and forwarded to several mathematicians

(including Gauss and Jacobi). Liouville acknowledged in September 1843 that he “recognized the entire correctness

of the method”, which was, subsequently (in 1846), published in the Journal de Mathématiques Pures et Appliquées

XI, giving birth to Galois theory. Liouville declared an intention to proceed with publishing the rest of Galois’ papers.

Yet, most unfortunately, subsequent publication never ensued, and neither Gauss nor Jacobi has ever fulfilled Galois

modest request to merely announce the significance (tacitly alleviating the burden of judging the correctness) of

his (not necessarily published) contributions. In 1847, Liouville published (instead) his own paper “Leçons sur les

fonctions doublement périodiques”.

23
In 1830, Galois competed with Abel and Jacobi for the grand prize of the French Academy of Sciences. Abel

(posthumously) and Jacobi were awarded (jointly) the prize, whereas all references to Galois’ work (along with the

work itself!) have (mysteriously) disappeared. The very fact that Galois’ lost works contained contributions to Abelian

integrals is either unknown (to many) or deemed (by some) no longer relevant to our contemporary knowledge. For

the sake of being fair to a few exceptional mathematicians, we must cite (without translating to English) Grothendick

(as a representative), who (in his autobiographical book Récoltes et Semailles) graciously admits that “Je suis per-

suadé d’ailleurs qu’un Galois serait allé bien plus loin encore que je n’ai été. D’une part à cause de ses dons tout à fait

exceptionnels (que je n’ai pas reçus en partage, quant à moi).”

24
Indeed, it is the five-element set (not merely a five-element set) which Hermite had no choice but to employ.

Galois’ construction for each of the two remaining cases, where n = 7 or n = 11, allows an alternative, as will, next,
be exhibited.
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the four triple-pairs, which we did write after the first, and we now, guided by his conciseness

and brevity, confine ourselves to writing down only the first pair-set that he presented for each

of the two remaining cases, where n = 7 and n = 11, respectively: {(0,∞), (1,3), (2,6), (4,5)} and
{(0,∞), (1,2), (3,6), (4,8), (5,10), (9,7)}. Unlike the case n = 5, an alternative might be presented
for n = 7, which is {(0,∞), (1,5), (2,3), (4,6)}, and for n = 11, which is {(0,∞), (1,6), (3,7), (4,2),
(5,8), (9,10)}. The absolute invariant for the action of the subgroup Γ2, of the modular group

Γ, consisting of linear fractional transformations congruent to the identity modulo 2, is β2
. A

fundamental domain Γ2\H for the action of Γ2, might be obtained by subjecting a fundamental

domain Γ\H (of Γ) to the action of the quotient group Γ/Γ2 � S3.
25
In particular, β2

viewed as

function on H , is periodic, with period 2. The definition of the modular equation, initially in-
troduced for the invariant j , might be extended to other invariants such as β2

or β1/4
. Sohnke,

in a remarkable work [19], had determined the modular equations for β1/4
, for all odd primes

up to, and including, the prime 19. That work, along with Betti’s work, inspired Hermite to (suc-

cessfully) relate a (general) quintic, in Bring-Jerrard form, to a modular equation of level 5, yet
he had little choice but to admit the importance of a sole Galois idea (in depressing the degree

of the modular equation).
26
The modular polynomial for β1/4

, of level 5, is

φ5(x, y) := x6 − y6 +5 x2 y2 (x2 − y2)+4 x y (1−x4 y4),27 (9)

and the period of β1/4
(as an analytically continued function) is 16. Denoting the roots of

φ5(x, y =β1/4(τ)), for a fixed τ ∈H , by

y5 =β1/4(5τ), ym =−β1/4
(
τ+16m

5

)
, 0 ≤ m ≤ 4,

one calculates the minimal polynomial for x1 := (y5 − y0)(y4 − y1)(y3 − y2) y . It turns out to be

x5 −2000β2 (1−β2)2 x +1600
p

5β2 (1−β2)2 (1+β2).

Thereby, a root of the quintic

x5 −x + c, c := 2(1+β2)

55/4
√
β(1−β2)

= 2(1+ y8)

55/4 y2
√

1− y8
,28

is p
5c x1

4(1+β2)
= x1

2
√

5
p

5β(1−β2)
= (y5 − y0)(y4 − y1)(y3 − y2)

2 y
√

5
p

5(1− y8)
,

25
The latter quotient group coincides withG2 which is isomorphic with S3.

26
Hermite had apparently adopted Cauchy’s catholic and monarchist ideology, much in contrast to Galois’ passion-

ate rejection of social prejudice. In 1849, Hermite submitted a memoir to the French Academy of Sciences on doubly

periodic functions, crediting Cauchy, but a priority dispute with Liouville prevented its publication. Hermite was

then elected to the French Academy of Sciences on July 14, 1856, and (likely) acquainted, by Cauchy, with ideas stem-

ming from (but not attributed to) Galois “lost” papers. T. Rothmanmade a pitiful attempt in “Genius and Biographers:

The Fictionalization of Evariste Galois”, which appeared in the American Mathematical Monthly, vol. 89, 1982, pp.

84-106 (and, sorrowly, received the Lester R. Ford Writing Award in 1983) to salvage Cauchy’s reputation (unknow-

ingly) suggesting further evidence of Cauchy’s cowardice, and surprising us, along the way, with many (unusual but

ill substantiated and biased) judgements telling us much about T. Rothman himself, but hardly anything trustworthy

about anyone else!

27
A diligent reader would notice a sign discrepancy in our equation once compared with the equation derived in

[19].

28
One must note that the constant coefficient c is invariant under the inversions β 7→ −1/β and β 7→ (1−β)/(1+β).

Here, the composition of the latter two inversions is another inversion. The corresponding four-point orbit in a

fundamental domain Γ2\H is generated via the mapping τ 7→ 2/(2−τ).
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and so is expressible via the coefficients λm and µm of the elliptic polynomials rm 5(x) =: x2 −
λm x +µm , 0 ≤ m ≤ 5. In fact, the polynomials rm 5 might be so ordered so that, for each m, the
value β2

m coincides with y8
m . The (general) expression for y8

m = β2
m , as given in (8), might be

rewritten for the special case n = 5 as

y8
m = s(λm , µm , β)

β4s(λm , µm , 1/β)
,

where

s(λ, µ, x) =
(

1+λx

µ
+x2

)(
4λ+

(
2λ2

µ
+4+5µ

)
x +λ

(
2

µ
+3

)
x2 +x3

)
,

and the coefficients λm = γm + (2 ·γm) and µm = γm(2 ·γm) satisfy

5∏
m=0

(
x2 −λm x +µm

)= x12 + 62 x10

5
−21 x8 −60 x6 −25 x4 −10 x2 + 1

5
+

+αx3
(

x8 +4 x6 −18 x4 − 92 x2

5
−7

)
+α2 x4

(
x6

5
−3 x2 −2

)
− α3 x5

5
= r5(x).

The roots γm and 2 ·γm , 0 ≤ m ≤ 5, of the division polynomial r5 might be highly efficiently

calculated via the algorithm, provided in [1]. Calculating a pair, say γ0 and γ5, suffices, of course,

for calculating all twelve roots via applying the addition formula (2) along with the doubling

formula (3).

Let us conclude with a couple of examples, so let τ = 2 i , β = (p
2−1

)2
. The corresponding

quintic is

x5 −x + 3
√

2
p

2

5
√p

5
.

The corresponding division polynomial r5(x) factors over Q[
p

5] into three quartic polynomial-
factors:

r5(x) =
(
x4 +4

(
3+ p

5
)

x3 +6
(
5+2

p
5
)

x2 −4
(
29+13

p
5
)

x +9+4
p

5
)

(
x4 + 18 x2

5
+ 8 x

5
+ 1

5

)(
x4 +4

(
3− p

5
)

x3 +6
(
5−2

p
5
)

x2 −4
(
29−13

p
5
)

x +9−4
p

5
)

.

Each (quartic) factor is an elliptic polynomial pair product. They are (with their argument omit-

ted) r55r50, r54r51 and r53r52, respectively. The (corresponding) modular polynomial φ5

(
x, y =

β1/4 =
√p

2−1
)
factors, over Q[y], into a quadratic and a quartic polynomial-factor:

φ5
(
x, y

)= (
x2 + y−2 )(

x4 +4 y3 (
1− y2 x2)x −2 y4 x2 − y8 )

,

and the six roots (of the modular polynomial) might be accordingly expressed and ordered:

y0 =−
√ p

2
(
2+ p

5
)−χ(−1)

χ(1)
, y1 =−i

√p
2+1, y2 =

√ p
2
(
2− p

5
)−χ(i )

χ(−i )
.

y3 =
√ p

2
(
2− p

5
)−χ(−i )

χ(i )
, y4 = i

√p
2+1, y5 =

√ p
2
(
2+ p

5
)−χ(1)

χ(−1)
,29

29
The image of the square root is assumed, here (but not necessarily earlier!), to be unambigiously taken in the

right half-plane, including the boundary of the upper quadrant but excluding it for the lower quadrant.
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where

χ(ε) := 3+2

√p
5ε.

Exploiting the identities

β=
(p

2−1
)2 =

(p
10−3

)(p
5−2

)(
3
p

2+ p
5−2

)
,

χ(1)χ(−1) =
(p

5−2
)2 =

(
3
p

2+ p
5+2

)(
3
p

2− p
5−2

)
.

χ(i )χ(−i ) =
(p

5+2
)2 =

(
3
p

2+ p
5−2

)(
3
p

2− p
5+2

)
,

along with the alternative expressions

y0 =−
√−(i +1)χ(i )+ √

(i −1)χ(−i )√
2χ(1)

, y5 =
√

(i −1)χ(i )+ √−(i +1)χ(−i )√
2χ(−1)

,

y2 =
√

2χ(−i )√
(1+ i )χ(1)− √

(1− i )χ(−1)
, y3 =

√
2χ(i )√

(1− i )χ(1)− √
(1+ i )χ(−1)

,

one finds out that

x1 =−8
p

5β,

and, so, a root of our quintic is

−8
p

5β

2
√

5
p

5β(1−β2)
= −2√p

10
.

Along the way, we might calculate the (five) discriminants

d 2(β2) = d 2(β2
1) = d 2(β2

4) = 32,

d 2(β2
0) = 32χ(−1)

χ(1)5 , d 2(β2
2) = 32χ(i )

χ(−i )5 , d 2(β2
3) = 32χ(−i )

χ(i )5 , d 2(β2
5) = 32χ(1)

χ(−1)5 ,

observing that they are sixth powers of the respective values

25/6,

p
5−1

21/6χ(1)
,

p
5+1

21/6χ(−i )
,

p
5+1

21/6χ(i )
,

p
5−1

21/6χ(−1)
,

and, so using equation (5), we might calculate five special values of the modular invariant:

j

(
5 i

2

)
= j0 =

(p
5+2

)20
χ(−1)6

(
238

p
5−60

√p
5− 861

2

)3

, j (2 i ) = j1 = j4 =
(

11

2

)3

,

j

(
5 i −1

4

)
= j2 =−

(p
5−2

)20
χ(i )6

(
238

p
5−60

√p
5 i + 861

2

)3

,

j

(
5 i +1

4

)
= j3 =−

(p
5−2

)20
χ(−i )6

(
238

p
5+60

√p
5 i + 861

2

)3

,

j (10 i ) = j5 =
(p

5+2
)20

χ(1)6
(
238

p
5+60

√p
5− 861

2

)3

.30

30
These special values might be expressed as cubes if one notes that

p
5±2 = (p

5±1
)3

/8.
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We might now let τ = i , β = p
2, and observe that the modular polynomial φ5

(
x, y = β1/4 =√√p

2
)
factors, over Q[y], into a quadratic and a quartic polynomial-factor:

φ5

(
x, y =

√√p
2

)
= (

x2 − y5x + y2)(x4 −3 y5x3 −2 y2x2 + y7x − y4) ,

before confirming that the roots of the latter quartic polynomial-factor

ε2
p

5+1

y3
(
ε

√p
5−1

) , ε= {1, −i , i , −1},

are, respectively, obtainable as fourth roots of the values

p
2
(
ε2

p
5+2

)
χ(−ε)

,

which, in turn, are (as they ought to be) the images of the four afore-calculated values β0, β2, β3

and β5 (where βwas 3−2
p

2 ) if subjected to the (fourth order) linear fractional transformation

1+βm

1−βm
, m ∈ {0, 2, 3, 5}.

The four corresponding values of the discriminants are

d 2

(
2
(
ε2

p
5+2

)2

χ(−ε)2

)
= χ(ε)5

2χ(−ε)
= 32

(
χ(ε)p
5−ε2

)6

.

Two more special values of the modular invariant are calculated by (reapplying) formula (5) to

a discriminant from, firstly, the complex-conjugate (ε=±i ) pair, and, secondly, the real-valued
(ε=±1 ) pair:

j

(
5 i +1

2

)
=

(
2927−1323

p
5

2

)3

, j (5 i ) =
(

2927+1323
p

5

2

)3

.

One might infer, from equation (8), that the modular polynomial, of level 2, Φ2(x, z) vanishes at

(x, zl ) = 4

27

((
d 2 +1

)3

d 2 ,

(
d 2

l +1
)3

d 2
l

)
, l ∈ {0,1,2},

where (
d 2

0 , d 2
1 , d 2

2

)= 16

(
1

d 2 , − d

β3 , β3 d

)
, d = d(β) =β− 1

β
.

For x ∈ { j0, j2, j3, j5}we have already calculated the (two) corresponding values z0. Concluding,

we calculate the corresponding values z1 and z2, so put

ψ(δ,ε) :=
p

5+1

8χ(ε)6

(
57272−34011δ

p
2+4

(
101−5463δ

p
2
)
ε2

p
5+

−18
(
800+111δ

p
2+4

(
100+27δ

p
2
)
ε2

p
5
)
ε

√p
5

)
=
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(
ε2

p
5+1

)37

239

(
1190448488−858585699δ

p
2+540309076ε2

p
5−374537880δε2

p
10 +

−ε
√p

5
(
693172512−595746414δ

p
2+407357424ε2

p
5−240819696δε2

p
10

))
,

and observe that

z1( jm) = 4

27

(
28/3d(βm)2/3

β2
m

− βm

24/3d(βm)1/3

)3

=ψ(−1,ε)3,

z2( jm) = 4

27

(
28/3β2

m d(βm)2/3 + 1

24/3βm d(βm)1/3

)3

=ψ(1,ε)3,

where ε ∈ {1, −i , i , −1} correspond, respectively, tom ∈ {0, 2, 3, 5}, as before, and verify that

j

(
5 i

4

)
= z1( j0) =ψ(−1,1)3, j

(
20 i +5

17

)
= z1( j2) =ψ(−1,−i )3,

j

(
20 i −5

17

)
= z1( j3) =ψ(−1, i )3, j (20 i ) = z1( j5) =ψ(−1,−1)3,

j

(
5 i +2

4

)
= z2( j0) =ψ(1,1)3, j

(
20 i +4

13

)
= z2( j2) =ψ(1,−i )3,

j

(
20 i −4

13

)
= z2( j3) =ψ(1, i )3, j

(
10 i +1

2

)
= z2( j5) =ψ(1,−1)3.

Few of these special values were first presented in [5].

5. CONCLUSION

Nowadays, oblivion has entirely replaced marvelling at Galois key step, towards solving the

quintic, in depressing the degree of the modular equation, of level 5, from 6 to 5,31 and Galois
is merely mentioned, along with Abel, for determining that the quintic is not generally solvable

via radicals. With this paper, we hope that this (crippled) view of Galois (deeply constructive

and far from fully appreciated) theory would finally come to an end. A recent exapmle concerns

an expression, for “the speed of precession” of a freely moving triaxial rigid body, which attain-

ment relied on identifying the function field where such a general expression would lie, based

on exploring its symmetries [7]. Only a (minor) consequence of such Galois guided algebraic

approach, was identifying a Galois axis fixed within a triaxial rigid body and distinct from any

of its three main axes of inertia. Marvelously, Galois axis rotates uniformly during the critical

motion (whether or not such motion is said to be either stable or unstable and whether or not

the body “flips”), as shown in [8].

31
For example, S. Vlăduţ (wrongfully) attributes, in his book “Kronecker’s Jugendtraum and Modular Functions”

(published by Gordon and Breach in 1991), to Hermite showing the equivalence of the general quintic to the modular

equation of level 5.
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Аннотация

Последнее письмо Эвариста Галуа, адресованное Огюсту Шевалье, накануне (так

называемой) дуэли 30 мая 1832 года (которая, пожалуй, проще и точнее была оха-

рактеризована как убийство Альфредом, не допустившим на следующий день свя-

щенника к своему старшему брату Эваристу в его последние мгновения), было на-

писано на семи страницах и разделено на три мемуара. Первый мемуар занимает

чуть меньше двух страниц. Впоследствии сей мемуар стал известен как теория Га-

луа (о которой, в частности, рассказал Мелвин Кирнан). Однако, Галуа продолжил

своё письмо потрясающе удивительными конструкциями во втором мемуаре, кото-

рый занял чуть более двух страниц. Третий (и самый длинный!) мемуар начинается

на пятой странице и остаётся загадочным и нерасшифрованным, но он, несомнен-

но, вдохновил Александра Гротендика сформулировать свою гипотезу о периодах.

Письмо заканчивается абзацем о последних «главных размышлениях», касающи-

хся «приложений теории неоднозначности к трансцендентному анализу», где Галуа

преподносит нам последнюю загадку, говоря, что «мыможем тотчас же рассмотреть

большое множество выражений». К сожалению, неумолимость давлеющего вре-

мени не позволила ему привести какие-либо конкретные примеры, а смогла лишь

дать краткие последние инструкции, о том, что делать с письмом. Несмотря на это,

многие «историки» назойливо и примитивно твердят нам (и друг другу), что мы не

должны «переоценивать» значение письма, которое (вопреки их советам) красно-

речиво и правдиво описывалось Германом Вейлем как «самая значимая рукопись

во всей истории человечества»!

Ключевые слова: эссенциальная эллиптическая функция, понижение степени мо-

дулярного уравнения, проективная специальная линейная группа над простым по-

лем, эллиптические и коэллиптические полиномы, решение общего квинтического

уравнения.
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