
Computer tools in education, 2018

№ 1: 16–30

http://ipo.spb.ru/journal

SIMULATION OF SPACE PROBES

AND THEIR MOTIONS RELATIVE

TO THE HOST ORBITAL STATION

Butikov E. I.
1

1
Saint Petersburg State University, Saint Petersburg, Russia

Abstract

Various possibilities for launching a space probe from an orbital platform to a resonant

orbit are discussed. The probe is to approach the surface of the planet in order to explore

it from a low altitude or to investigate far off space regions moving on an orbit with a

high apogee. After the mission is fulfilled, the probe is to return to the orbital station and

softly dock to it. In this paper, the simple quantitative analysis of the required maneuvers

is based on the fundamental laws of physics, the principles of conservation of energy and

angular momentum, and also on the laws of Kepler. The examples of probe movements

examined are illustrated by themodeling program accompanying the article. Thematerial

is suitable for specialists in the field of astrodynamics and orbital mechanics, as well as

for a wide range of readers interested in space exploration.
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1. INTRODUCTION: ORBITS SUITABLE FOR SPACE PROBES

In this paper we present a simple treatment in terms of physics of trajectories suitable for

a space probe, which is an automatic or manned module with scientific instruments launched

from a station circularly orbiting the Earth or some other planet. The module is to approach the

surface of the planet in order to explore it or to perform more detailed imaging of a planet’s

surface from a low altitude. Then the module, with the scientific information it has collected, is

to return to the orbital station and gently dock to it. Or, as another assignment, the space probe

is to investigate far off space regions. In either case, its orbit must satisfy special requirements

so that a rendezvous of the probe with the station be possible after the probe has completed its

mission.

Our aim is to show with the help of rather modest mathematical means that orbits suitable

for space probes are actually possible, and how such orbits can be realized. Examples of probe’s

motions relative to the planet and relative to the host orbital station are illustrated by a simula-

tion program accompanying the paper.

Various problems related to orbital mechanics and astrodynamics similar to the above-

mentioned are discussed inmany texts and papers (see, for example, Refs. [1]–[5] and references

therein). Many useful references can be found on the web [6]. Most of the papers on the subject
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are advanced texts written for experts and specialists. In this paper we use a rather simple ap-

proach accessible to non-experts and novices in astrodynamics. Our treatment of the problem

is based on the fundamental laws of physics, on principles of energy and angular momentum

conservation, and on Kepler’s laws. We have already used similar physically meaningful ap-

proach in a contribution to the journal Advances in Space Research, see Ref. [7]. The information
included in the present paper and in the accompanying software is suitable for the space enthu-

siast who wants to learn more about the fascinating science of space exploration.

If the probe is to investigate the surface of the planet, its orbit must approach the planet as

closely as possible. Consequently, the orbit must have a low perigee (periapsis, for investigating

some other planet rather than the Earth), but must not intersect the surface of the planet (more

precisely, the upper rarefied strata of the atmosphere). Moreover, as an obligatory requirement,

the period of revolution along such an elliptical orbit must be related to the period of revolu-

tion of the host orbital station along its circular orbit in such a way that the probe and station

periodically meet one another. Such a rendezvous can occur only at a common point of their

orbits in case their periods of revolution are in the ratio of integers, preferably small. The or-

bits that satisfy this requirement are called resonant. For example, if the period of revolution of

the probe is 2/3 the period of the station, the station completes two revolutions while the probe

completes three. Thus the two meet at the common point of their orbits every two revolutions

of the station after the departure of the probe.

To keep things simple, we assume that the initial and final orbits are in the same plane.

Similar maneuvers are often used to move spacecraft from their initial parking orbits to their

final mission orbits. In such problems of space dynamics, the relative motion of the orbiting

bodies is important [8].

We assume also that the host orbital station stays in a parking circular orbit around the

planet. After the space probe is undocked from the station, it moves along almost the same cir-

cular orbit and with almost the same velocity as does the station. In order to launch the probe

into a required orbit, we should impart to it some additional velocity (otherwise called the ve-

locity change or characteristic velocity) with the help of, say, an on-board rocket engine. When

the engine is very powerful and operates for a very short time (so short that the probe covers

only a very small portion of its orbit during the thrust), the change in the orbital velocity of the

spacecraft is essentially instantaneous. Most propulsion systems operate for only a short time

compared to the orbital period, so that we can treat the maneuver as an impulsive change in

velocity while the spatial position of the probe remains unchanged.

In this paper it is assumed that the change in velocity occurs instantly. After such a maneu-

ver the probe continues its passive orbital motion along a new elliptical orbit. The parameters

that characterize the new orbit depend on the initial conditions implied by momentary values

of the radius vector and the velocity vector of the space probe at the end of the applied impulse.

Further on in this paper we concentrate on elementary analytical calculations of the velocity

change, which is to provide the requirements that the new orbit of the space probe must sat-

isfy. The paper comes along with a highly interactive simulation program [9] developed by the

author. The simulation allows us to watch motions of both the probe and space station on the

computer screen (and simultaneously the motion of the probe relative to the station in a sep-

arate window) in a time scale convenient for observation. The relative motion reveals many

extraordinary features that are hard to reconcile with common sense and our everyday experi-

ence.
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2. KEPLER’S LAWS AND A SPACE PROBE

To properly understand the design of space probe’s missions, it is essential to understand

the laws that govern the passive motion of a body in a central field of gravity. In the subsequent

analysis of possible trajectories, we assume that passivemotion of the probe obeys Kepler’s laws.

Kepler’s laws hold strictly if the body moves under the sole force of a central field whose

strength falls off as a square of distance from the center. Such is the Newtonian gravitational

field created by a point mass, and by a spherically symmetric star or planet. The latter field

outside the planet is just the same as if all the planet’s mass were concentrated at its center.

However, an Earth’s satellite or a space probe, besides the gravitational field of the Earth, is

subjected also to gravitational pulls of the Sun, the Moon and other celestial bodies. Then we

can ask a natural question: Why is it possible to apply Kepler’s laws to the motion of artificial

satellites and space probes?

The point is that usually we describe the satellite’s motion in the frame of reference asso-

ciated with the Earth (non-rotating geocentric frame). Because the gravitational pull of the Sun

gives very nearly equal accelerations to the satellite and to the Earth itself, we can assume that in

the non-inertial geocentric frame the satellite’s passive motion is governed solely by the Earth’s

gravity. Such possibility to ignore the gravitational influence of other bodies in the planetocen-

tric reference frame is justified in celestial mechanics by introducing the so-called sphere of

gravitational influence of a planet with respect to the Sun (see, for example, Refs. [1, 4]). For the

Earth, this region extends to more than a hundred Earth’s radii. Therefore orbits of all probes

discussed in this paper lie deeply inside the sphere of gravitational influence.

In terms of physics the situation can be explained as follows: The Earth together with its arti-

ficial satellites is freely falling in the gravitational field created by the Sun, so that all the bodies

on the Earth and in its close vicinity, including the satellites in low orbits, occur in the “state of

weightlessness” with respect to the gravitational field of the Sun (and of all other nearby and

far-off massive celestial bodies). In other words, for any earthly body its gravitational attrac-

tion to the Sun and the Moon is very nearly compensated by the pseudo force of inertia, which

is caused by the acceleration of the Earth as a whole under the gravitation of the Sun and the

Moon. Slightly non-uniform character of this gravitational field is responsible for tiny effects of

differential gravitation, which are usually described as tidal forces. For satellites in low orbits

tidal forces constitute only about 10−7
of the Earth’s gravity—they are about ten million times

smaller than the weight. More details regarding tidal forces can be found, say, in Refs. [4, 10].

From the point of view of rocket fuel expenditures, the most efficient method of transition to

a suitable orbit consists of imparting to the space probe an additional velocity, which is tangent

to its initial circular orbit. When the thrust is tangential to velocity, the amount of work done by

the rocket engine ceteris paribus is the greatest, and so is the change in energy and in the speed

of the orbiting craft.

Launching a space probe by a velocity change tangential to the orbit is similar to the so-called

Hohmann’s transfer between circular orbits through a transitional semielliptical trajectory that

grazes the inner orbit from the outside and the outer orbit from the inside. It is amazing that the

idea was suggested by a German engineer Walter Hohmann in 1925, at those old times, many

years before launching artificial satellites became technically possible.

If the thrust is tangential to the orbital velocity, the new orbit of the probe lies in the same

plane with the circular orbit of the station. When the additional velocity is directed opposite to

the orbital velocity of the station, we get an inner elliptical orbit that grazes the circular orbit of

the station only at the orbital position at which the rocket engine thrusts the probe backward.
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This point is the apogee of the orbit. Otherwise, if the additional velocity is directed forward

along the orbital velocity of the station, the probe moves to an outer elliptical orbit. The point of

the velocity change (the burnout point) is the perigee of the new orbit.

For choosing a suitable resonant orbit of a space probe, the crucial issue is the period of

revolution. The value of additional (characteristic) velocity that must be imparted to the space

probe after its undocking from the station in order to transfer the probe to an elliptical orbit

with the required period of revolution can be calculated with the help of Kepler’s laws and prin-

ciples of energy conservation and angular momentum conservation. This is done, for example,

in [4]. To get the orbit with the given arbitrary period T , the space probe must have after the un-
docking from the host station and burnout the planetocentric velocity v0 (directed tangentially

to the circular velocity vcirc of the orbital station), whose magnitude is given by the following

expression:

v0 = vcirc

√
2− (T0/T )2/3. (1)

Here T0 is the period of revolution of the orbital station. The required magnitude of the initial

velocity v0 of the probe after the burnout is expressed here in terms of the circular velocity

vcirc for the given radius of the station’s orbit and the ratio of periods T0/T . This makes Eq. (1)
applicable for space probes launched from an orbital platform investigating not only the Earth,

but also an arbitrary spherically symmetric planet.

3. INNER RESONANT ORBITS OF SPACE PROBES

Next we consider several possible inner resonant orbits suitable for the space probe that

should approach the surface of the planet as close as possible.

After performing its mission, the space probe encounters the orbital station each time the

station completes a revolution in case the period T of the probe’s revolution equals T0/n, where
T0 is the period of the station, and n is an integer. However, there is actually only one such
possibility, namely, n = 2. Indeed, elliptical orbits with periods that equal T0/3, T0/4, T0/5, . . . do
not exist. The reason is that the shortest possible period of revolution along an inner elliptical

orbit corresponds to the degenerate ellipse with the minor axis of zero length (a straight-line

ellipse with foci at the center of the planet and at the initial point, and with a major axis equal

to the radius of the circular orbit of the station). According to Kepler’s third law, this minimal

period equals (1/2)3/2T0 ≈ 0.35T0, a value greater than T0/3.
For the inner elliptical orbit with the period T = T0/2, the perigee distance rP equals 0.26r A ,

where r A is the apogee distance that equals the radius r0 of the circular orbit of the station.

Hence, this rather exotic orbit can be realized only if the radius of the station’s circular orbit is

at least four times the radius of the planet. The backward velocity change ∆v needed to transfer
the space probe to this orbit from the initial circular orbit equals approximately 0.36 vcirc, that

is, 36% of the circular velocity vcirc.

Table 1 lists the values of the initial velocity v0 of the space probe and the corresponding

values of the velocity change ∆v = v0 − vcirc for several inner elliptical orbits suitable for space

probes. These velocities are expressed in units of the circular velocity v0 of the orbital station for

convenience of usage in the simulations [9]. The values in Table 1 are calculated with the help

of expressions whose derivation is given in [4]. The perigee distance rP = 2a − r0 for each of the

orbits (in units of the radius r0 of the station’s circular orbit) is also listed. The corresponding

inner orbit is possible if this distance is greater than the radius R of the planet. The difference
rP −R is the shortest distance from the surface of the planet reached by the space probe.
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Table 1. Inner resonant elliptical orbits of space probes

T0/T v0/vcirc ∆v/vcirc rP /r0

2/1 0.64234 0.35766 0.25992

3/2 0.83050 0.16956 0.52629

4/3 0.88802 0.11198 0.65096

5/4 0.91630 0.08370 0.72355
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Figure 1. Elliptical planetocentric orbit of the space probe with the period 1/2T0 (left) and the trajectory

of the space probe in the reference frame associated with the orbital station (right)

The inner elliptical orbit of the space probe whose period T equals 1/2 of the station period
T0 is shown on the left-hand panel of Fig. 1. In this case a backward characteristic velocity∆v1 of

approximately 0.358 vcirc is required (see Table 1). At point A the space probe is undocked from
the station, and the additional velocity ∆v1 is imparted to it by an on-board rocket engine. As a

result, velocity of the probe is reduced from the circular velocity vcirc to the value v0 = 0.642 vcirc

required for the apogee of the desired elliptical trajectory with the period T0/2. During one
revolution of the station along its circular orbit the probe covers the elliptical orbit twice.

The right-hand panel of Fig. 1 shows a very counterintuitive trajectory of this space probe in

the rotating non-inertial reference frame associated with the orbital station (more exactly, in the

reference frame associated with the straight line joining the station and the center of the planet).

In other words, this is the trajectory of the probe as it appears for the astronauts residing on the

orbital station.

The trajectories of the probe in the two frames of reference shown in Fig. 1 (and in all

subsequent figures of this paper) are generated with the help of the simulation program

“Orbital Maneuvers and Relative Motion” that accompanies the paper. This program is a

part of the award-winning software package “Planets and Satellites” [9] available on the web

at http://butikov.faculty.ifmo.ru/ (section Downloads). This stand-alone program runs under

Windows operating system after installing on the local machine. It is supplied with a detailed

online Tutorial which describes the possibilities of the simulation program, and explains how

to use it.

We emphasize that the program does not use the analytical solution (which we have used

above only for calculating the required velocity change of the probe): The program simply in-
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tegrates numerically (using Runge–Kutta method of the 4th order) the differential equations of

motion. The simulation allows us to watch on the computer screen themotion both of the orbital

station and the space probe with respect to the planet, and to simultaneously watch the motion

of the probe relative to the station. The motion is displayed in some time scale, which we can

vary for convenient observation.

In order to use the program “Orbital Maneuvers and Relative Motion” [9] for illustrating

the maneuvers described in the paper, we can simply click the item “Examples” in the menu to

open the list of predefined examples. Thus we can avoid calculations of necessary parameters

for executing a desired simulation. We simply choose the relevant example in the list. A short

description of the chosen example appears below in the text window. When we click “Ok” but-

ton, all the values required for the chosen simulation will be defined by the program and loaded

automatically. Besides the maneuvers discussed in the paper, the set of predefined examples il-

lustrates a lot of other various possible orbital missions. The program includes context-sensitive

help and explanations, which are invoked from within the program by pressing F1 key or by

clicking menu item “Help on Physics.”

Relative to the orbital station, the probe after undocking first moves backward, in the di-

rection of the additional velocity ∆v1 (see the right-hand panel of Fig. 1), but soon the probe

descends toward the planet and overtakes the station. When the probe passes through perigee

P of its orbit for the first time, it occurs at point P of the trajectory that it traces relative to the
station (see the right-hand panel of Fig. 1) at the shortest distance from the surface of the planet.

At the perigee P the distance rP from the center of the planet equals approximately 0.26r A ,

where r A is the apogee distance (that equals the radius r0 of the circular orbit of the station).

Relevant calculations can be found, say, in [4]. As we already mentioned, this means that such

an orbit can be realized only if the radius of the initial circular orbit (orbit of the station) is at

least four times the radius of the planet.

After passing through P , the distance to the planet increases and reaches its maximum value
at the moment at which the probe passes again through the apogee A of its orbit. On the trajec-
tory of the relative motion, this position of the probe is A′

(see the right-hand panel of Fig. 1).

The station at this moment passes through the opposite point (with respect to the burnout point

A) of its circular orbit.

The probe occurs at the same minimal distance (point P ′
) for the second time during the

second revolution along its elliptical orbit, and then meets the station at point A. To equalize its
velocity with that of the station for the soft docking, another additional impulse ∆v2 is required.

Its magnitude is the same as that of ∆v1, but its direction is opposite to ∆v1, because we must

increase the velocity of the probe and make it equal to the velocity vcirc of the station.

To observe the above-described counterintuitive simulation with the help of the package

“Planets and Satellites” [9], we can simply choose “Inner Space Probe (Period T0/2)” from the
list of predefined examples in the program “Orbital Maneuvers and Relative Motion.”

The inner elliptical orbit of the space probe whose period equals 2/3 of the station’s period

is shown on the left-hand panel of Fig. 2. In this case a backward characteristic velocity ∆v of
approximately 0.17 vcirc (in magnitude) is required (see Table 1). At arbitrary point A the space
probe is undocked from the station and the velocity change ∆v is imparted to it by an on-board
rocket engine. At the perigee P of the elliptical orbit the distance rP from the center of the planet

equals approximately 0.53r0 (see Table 1). Hence, the orbit is suitable for a space probe if the

circular orbit of the station has a radius approximately twice the radius of the planet.

The right-hand panel of Fig. 2 shows the trajectory of this space probe in the rotating ref-

erence frame associated with the orbital station. For a while after the launch, the probe ret-
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Figure 2. Elliptical orbit of the space probe with the period 2/3T0 (left) and the trajectory of the space

probe in the reference frame associated with the orbital station (right)

rogrades in this frame in the direction of the velocity change ∆v. However, soon its trajectory
turns first toward the planet and then forward—the probe overtakes the station in its orbital

motion. As a whole, the trajectory of the probe’s relative motion bends around the planet in the

same sense as the orbit of the station, in spite of the retrograde direction of the additional veloc-

ity. Near the apexes of the loops of the trajectory the motion of the probe becomes retrograde.

These apexes correspond to the instants at which the space probe passes through the apogee

of its geocentric orbit. Passing once along this whole closed trajectory of the relative motion,

the probe approaches the surface of the planet three times. At these moments the probe passes

through the perigee of its geocentric orbit.

The simplest way of simulating the above-described motion with the help of the package

“Planets and Satellites” [9] is choosing “Space Probe with the Period 2T0/3” in the list of prede-
fined examples from within the program “Orbital Maneuvers and Relative Motion.”

To dock the space probe softly to the station after the voyage, we should quench the remain-

ing relative velocity (to equalize the geocentric velocities of the probe and the orbital station).

This can be done by the same on-board rocket engine. The required additional impulse (the

characteristic velocity of the maneuver) is just of the same magnitude as at the launch of the

probe, but in the opposite direction: if at the launch the impulse is directed against the orbital

velocity of the station, now at docking it should be directed forward.

Figure 3 illustrates the motion of a space probe with the period of revolution T = 3/4T0.

In this case the probe meets the station at the initial point A after four revolutions around the
planet. The station completes three revolutions during this time. The trajectory of motion of the

probe relative to the orbital station has four loops that correspond to the timemoments at which

the probe passes through the apogee of its orbit.

This simulation (as well as all other simulations considered below in this paper) can also

be found in the list of predefined examples included in the program “Orbital Maneuvers and

Relative Motion” of the package “Planets and Satellites” [9].

4. OUTER RESONANT ORBITS OF SPACE PROBES

If the additional velocity imparted to the probe after its undocking from the station is di-

rected forward, tangentially to the orbit of the station, the resulting elliptical orbit encloses (cir-

cumscribes) the circular orbit of the station. The initial point at which the orbits graze one an-

other is the perigee of the elliptical orbit. Such outer orbits of space probes with suitable periods
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Figure 3. Elliptical orbit of the space probe with the period 3/4T0 (left) and the trajectory of the space

probe in the reference frame associated with the orbital station (right)

of revolution may be used to investigate the far-off space regions.
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Figure 4. Elliptical planetocentric orbits of the space probes with the periods 3/2T0 and 2T0 (trajectories

1 and 2 respectively, left panel), and the corresponding trajectories in the reference frame associated with
the orbital station (right panel)

Table 2 lists the values of the initial velocity v0 of the space probe and the corresponding

values of the velocity change ∆v = v0 − vcirc for several outer elliptical orbits of the probe. The

apogee distance r A = 2a − r0 for each of the orbits (the greatest distance of the probe from the

center of the planet) is also listed.

Figure 4 shows such outer elliptical orbits with the periods 3/2T0 and 2T0 (orbits 1 and
2, respectively). The right-hand panel of the figure shows the relative trajectories of the probe
for these cases. At first the probe moves relative to the station in the direction of the initial

velocity, but very soon its trajectory turns upward and then backward, and the motion becomes

retrograde—the probe lags behind the station. In this frame, the trajectory of the space probe

bends around the planet in the sense opposite to the orbital motion of the station.

For the orbit with the period T = 3/2T0, the velocity change is approximately 0.11 vcirc, and

the distance to apogee A1 (the greatest distance from the center of the planet) is 1.62r0 (r0 is
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Table 2. Outer elliptical orbits of space probes

T0/T v0/vcirc ∆v/vcirc r A/r0

4/5 1.066876 0.06688 1.32079

3/4 1.083752 0.08375 1.42282

2/3 1.112140 0.11214 1.62074

1/2 1.170487 0.17049 2.17480

the radius of the circular orbit). The closed orbit of relative motion (curve 1 on the right-hand
panel of Fig. 4) has two small loops, corresponding to the time moments at which the probe

passes through the perigee of its geocentric elliptical orbit. The whole closed path of the relative

motion corresponds to two revolutions of the probe along the geocentric elliptical orbit, covered

during three periods of revolution of the station.

The trajectory with the period T = 2T0 (see Fig. 4) requires the velocity change ∆v directed
forward, whose magnitude must be 0.17 vcirc, (see Table 2). The distance r A to apogee A2 equals

2.17r0. The closed orbit of the relative motion (curve 1 in Fig. 4) is covered during 2T0, that is,

during two periods of revolution of the station.

5. SPACE PROBES WITH A RADIAL ADDITIONAL VELOCITY

In order to investigate both the surface of the planet and remote space regions by the same

space probe, we can use an elliptical orbit obtained by imparting to the probe a transverse ad-

ditional impulse. If the additional velocity ∆v is imparted to the probe in the radial direction
(vertically up or down), the period of revolution is always greater than the period of the orbital

station. An example of such an orbit with the period of revolution T = 3/2T0 is shown in Fig. 5.
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Figure 5. Elliptical orbit of a space probe with the period 3/2T0 (left) and the corresponding trajectory

in the reference frame associated with the orbital station (right) in the case of a transverse additional

impulse

At point B of the initial circular orbit, the probe is undocked from the station, and the on-
board rocket engine imparts a downward additional velocity ∆v1. The required magnitude of

∆v1 (the velocity change of themaneuver) can be calculated on the basis of Kepler’s laws and the
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principle of energy conservation. Applying to the case under consideration these fundamental

laws of physics, and taking into account that a radial impulse of the rocket thrust does not change

the angularmomentum of the space probe, we obtain the following expressions for the distances

of the apogee and perigee of the elliptical orbit from the center of the planet:

r A = r0

1−∆v/vcirc
; rP = r0

1+∆v/vcirc
. (2)

Therefore, the semimajor axis of the elliptical orbit of the space probe depends on themagnitude

∆v of the transverse velocity change as follows:

a = 1

2
(r A + rP ) = r0

1− (∆v/vcirc)2 . (3)

Suitable orbits for the space probe must have certain periods of revolution. We can use

Kepler’s third law r0/a = (T0/T )2/3
to calculate the velocity change ∆v that gives an orbit with

the required period of revolution T . With the help of Eq. (3), we obtain

(
∆v

vcirc

)
=

√
1−

(
T0

T

)2/3

. (4)

For example, to obtain the orbit of the space probe with a period that is one-and-a-half peri-

ods of the orbital station (T0/T = 2/3), the required velocity change ∆v calculated from Eq. (4)
is 0.487 vcirc. The probe returns to the station after every two revolutions in its elliptical orbit.

During this time the station makes three full revolutions in its circular orbit, and they meet at

the initial point B . Such resonant elliptical orbit is shown in Fig. 5.
To obtain the orbit with the period T = 3/2T0, a rather large characteristic velocity of

0.487 vcirc is necessary. This value is several times larger than the tangential velocity change

of 0.11 vcirc needed for the elliptical orbit of the same period and the same major axis. To

explain with the laws of physics why an azimuthal impulse is so much more effective than a

radial one for achieving the elliptical orbit of the same energy (and hence of the same period

of revolution), we should take into account that when the thrust is aligned with velocity, the

amount of work done by the rocket engine is the greatest, and so is the change in energy of the

orbiting craft.

To dock softly the space probe to the station, another additional impulse from the rocket en-

gine is required. To equalize the orbital velocities, an additional velocity of the same magnitude

as at the launch must be imparted to the space probe, but now it should be directed radially

upward (∆v2 =−∆v1, see Fig. 5). The relative motion of the space probe in this case is shown on

the right-hand panel of Fig. 5. In the reference frame associated with the station, the space probe

covers its convoluted closed path during three revolutions of the station around the planet.

For T0/T = 4/5 Eq. (4) gives ∆v/vcirc = 0.372. In this case the space probe and the station
meet after every four revolutions of the probe and five revolutions of the orbital station.

6. A SPACE PROBE WITH THE SAME PERIOD OF REVOLUTION AS THAT OF THE STATION

It is possible to launch a probe that will return to the host station after one revolution of the

station. The period of revolution T of such a probe in its elliptical orbit must be the same as the
period T0 of the station. In accordance with the 3rd Kepler’s law, the major axis of this ellipse

must be equal to the diameter of the circular orbit of the station. This means that immediately

after the launch the probe’s velocity v0must have the samemagnitude vcirc as that of the station:
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Figure 6. Circular orbit of the station and elliptical orbit of a space probe with the period T = T0. Small

circles on the trajectories show simultaneous positions of the orbital station and the probe.

v0 = vcirc. In other words, the velocity vector of the probe must turn after the rocket thrust

through some angle α, preserving its magnitude (see Fig. 6 for the case α= 30◦
).

For the desired given value of the angle α, the required velocity change can be calculated as

follows:

∆v = 2vcirc sin(α/2). (5)

Direction of the additional velocity vector ∆v must make the angle α/2 (backward) with the
downward vertical (see Fig. 6).

We note some geometrical properties of the probe’s elliptical orbit. Its major axis is parallel

to the vector v0 of the probe’s initial velocity. The distance between the foci of the ellipse equals

2r0 sinα. Hence the perigee distance rP from the center of the Earth equals r0(1− sinα), the
apogee distance r A equals r0(1 + sinα). For the case α = 30◦

shown in Fig. 6, rP = r0/2 and
r A = 3r0/2.
The closed trajectory traced by the space probe relative to the orbital station is rather coun-

terintuitive (right panel of Fig. 7). This relative motion can be observed with the help of the

simulation program [9].
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Figure 7. Elliptical orbit of a space probe with the period T = T0 (left) and the corresponding trajectory in

the reference frame associated with the orbital station (right)
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The velocity change ∆v required for the maneuver that provides a certain value of the angle
α can be obtained in the simulation by two consecutive rocket thrusts. First, a backward instan-

taneous impulse ∆v1 is imparted to the probe, and immediately after it the second impulse ∆v2

is imparted vertically downward. Resulting velocity change∆v =∆v1+∆v2must be equal to vcirc

in magnitude and directed at the angle α/2 (backward) with respect to the downward vertical.
It follows from this requirement that the magnitudes of ∆v1 and ∆v2 must have the following

values:

∆v1 = 2vcirc sin2(α/2), ∆v2 = 2vcirc sin(α/2)cos(α/2) = vcirc sin(α). (6)

The probe and the station meet after one revolution of each along their orbits. To equalize

their velocities for soft docking, the velocity change of the samemagnitude |∆v| = 2vcirc sin(α/2)
is required, so that the whole ∆v -budget for the space probe mission is twice as great.

7. Transition to the Opposite Side of the Circular Orbit

Next we consider onemore example of spacemaneuvers. Imaginewe need to launch a space

vehicle from the orbital station into the same circular orbit as that of the station, but there is to

be an angular distance of 180◦
between the vehicle and the station. This mission can provide a

possibility of simultaneously watching the whole surface of the planet (both hemispheres) from

the station and from the probe. In otherwords, they are to orbit in the same circle but at opposite

ends of its diameter.

This goal cannot be achieved by a single maneuver. The on-board rocket engine must be

used at least twice. With two impulses we can transfer the space vehicle to the opposite point

of the circular orbit using an intermediate elliptical orbit with the period of revolution, say,

3/2T0 or 3/4T0. In the first case, after undocking from the station, an additional velocity ∆v1

is imparted to the space vehicle in the direction of the orbital motion (see Fig. 8). To calculate

the required value of the velocity change magnitude ∆v1 for the maneuver, we can use again

the conservation laws of energy and angular momentum, and Kepler’s third law. If the period

T for the outer elliptical orbit must equal 3/2T0, initial velocity v0 of the probe at the perigee

P , according to Eq. (1), must have the magnitude of
√

2− (2/3)2/3 vcirc = 1.1121vcirc, whence

∆v1 = 0.1121 vcirc.
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Figure 8. Transition of the space probe to the opposite point of the circular orbit. An elliptical orbit with

the period 3/2T0 is used (left panel). The trajectory in the reference frame associated with the orbital

station is shown on the right panel
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During one revolution of the space vehicle along its elliptical orbit (see Fig. 8), the station

covers exactly one and a half of its circular orbit. That is, the space vehicle reaches the common

point P of the two orbits (circular and elliptical) just at the moment when the station is at the
diametrically opposite point of the circular orbit.

In the relative motion, shown on the right-hand panel of Fig. 8, the space vehicle has covered

one half of its closed path. At this moment, the excess of velocity of the space vehicle over the

value vcirc is quenched by a second jet impulse, and the vehicle moves along the same circular

orbit as the station but at the opposite side of the orbit. In the window of the simulation pro-

gram [9] that displays the relative motion, the space vehicle is stationary at the antipodal point.

Clearly the second jet impulse must be of the samemagnitude as the first one but opposite to the

orbital velocity (∆v2 =−∆v1, see Fig. 8).

We leave to the readers to consider and simulate on their own (with the help of the pro-

gram [9]) the second above-mentioned possibility of transition to the opposite side of the same

circular orbit with the help of an inner intermediate elliptical orbit, for which the period of

revolution equals 3/4T0. The required value of the vehicle’s initial velocity must be equal to√
2− (4/3)2/3 vcirc = 0.8880vcirc, whence the backward velocity change ∆v = 0.1120 vcirc. It oc-

curs that both possibilities of transitions (through these outer and inner elliptical orbits) require

almost the same relative magnitude of the velocity change (0.1120 versus 0.1121).

8. CONCLUDING DISCUSSION

Many important problems in astrodynamics are associated with modifying the orbit of a

satellite or a spacecraft in order to produce a particular trajectory for an intended spacemission.

To plan such space flights, we must solve various problems related to the design of suitable

transitional orbits.

In unusual conditions of the orbital flight, navigation is quite different from what we are

used to on the Earth’s surface or even in the air or under the water, and our intuition fails

us. The orbital maneuvers are not as simple as driving a car or a motor boat or even flying a

plane from one point to another. In this paper we have shown how the fundamental laws of

energy and angular momentum conservation can be used for analytical calculations of the re-

quired velocity change for the desired maneuver of the spacecraft. The interactive simulation

experiments [9] reveal many interesting peculiarities of the orbital motions, and enhance un-

derstanding by complementing the analytical study of the subject in a manner that is mutually

reinforcing.

To provide a possibility of the space probe’s subsequent rendezvous with the station at a

common point of their orbits, the velocity change of the probe must satisfy the requirement that

the period of revolution of the space probe along its elliptical orbit relates to the period of rev-

olution of the orbital station along its circular orbit as a ratio of integers. The velocity change

of the probe required for a specific mission can be calculated by rather modest mathematical

means, without integrating the equations of motion. Trajectories of a space probe in the geo-

centric reference frame, and very counterintuitive trajectories of the probe’s relative motion in

the reference frame associated with the orbital station, are illustrated by convincing computer

simulations [9].

Contemporary interactive media offer us a convenient means to visualize and to explore the

orbital motions governed by the gravitational forces. The simulation program [9] creates vivid

and lasting impressions of the investigated phenomena, and provides us with a powerful tool to

explore basic concepts that are difficult to understand in an abstract conventional manner.
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Аннотация

Обсуждаются разные возможности запуска космического зонда с орбитальной пла-

тформы на резонансную орбиту. Зонд должен приблизиться к поверхности плане-

ты, чтобы исследовать ее с малой высоты, или изучить отдаленные области космо-

са, двигаясь по орбите с высоким апогеем. После выполнения миссии зонд должен

вернуться на орбитальную станцию и мягко пристыковаться к ней. Простой количе-

ственный анализ необходимых маневров базируется в статье на фундаментальных

законах физики, принципах сохранения энергии и момента импульса, а также на

законах Кеплера. Рассматриваемые примеры движений зонда иллюстрируются со-

провождающей статью моделирующей программой.Материал подходит для специ-

алистов в области астродинамики и орбитальной механики, а также для широкого

круга читателей, интересующихся освоением космоса.
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