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Abstract

This paper treats computer modeling of the process of constructing free projective
planes — more precisely, to algorithmically finding their successive incidence matrices;
and also to considering some numerical characteristics of these matrices. Matrix and
bilinear forms approaches are used to study the growth rate of the number of new
elements (points, lines) during step-by-step process of constructing projective plane
starting with the Hall IT* configuration. It appears that the number of new elements
grows asymptotically as a double exponent (linear on log(log) scale.) Rough estimate
from above also gives double exponential growth rate.

Keywords: free projective planes, finite geometries, combinatorial design.

Citation: N. D. Gogin & A. A. Myllari, “On Computer Modeling of Finite-generated Free
Projective Planes”, Computer tools in education, no. 4, pp. 14-28, 2017.

1. INTRODUCTION

W. W. Sawyer in his Prelude to Mathematics [1] writes: "Projective geometry is one of the
most beautiful parts of elementary mathematics.

For the professional mathematician it is undoubtedly an essential part of one’s education.
One does not need to go very far with it; the value of a detailed study of it is doubtful, except
for the specialist. But the basic patterns of projective geometry can be traced in many other
branches of mathematics; they serve to guide and to unify."

The subject of this paper is free and finite projective planes, part of the vast area of modern
combinatorics, called the theory of combinatorial designs. Combinatorial design theory is the
part of combinatorial mathematics that deals with the existence, construction and properties of
systems of finite sets whose arrangements satisfy generalized concepts of balance and/or sym-
metry [2]. Applications of combinatorial design theory can be found in many areas including
finite geometry (finite affine and projective planes, M6bius or inversive planes, etc.), tourna-
ment scheduling, experimental design, lotteries, mathematical biology, algorithm design and
analysis, networking, finite groups theory, and cryptography. We address interested readers to
the previously cited article in Wikipedia and references therein. Combinatorial designs have a
long history: for example, the magic square of order three, the so-called Lo Shu Square, dates
at least to 650 BC; the oldest image of this square was found on a tortoiseshell dated 2200 BC
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(according to legend the Chinese Emperor Yu observed the magic square

4 9 2
3 5 7
8 1 6

on the back of a divine tortoise [11].) Combinatorial design methods evolved along with the
general growth of combinatorics from the 18th century, for example, from the studies of Latin
squares and the famous "36 officers problem", which goes back to Leonard Euler (1782) [11].
Today, one can see many people solving Sudoku puzzles — actually, they are solving a classic
combinatorial design problem.

Classical subjects of combinatorial design theory include balanced incomplete block designs
(BIBDs), symmetric BIBDs, Hadamard matrices and Hadamard designs, difference sets. Other
combinatorial designs are related to or have been developed from the study of these fundamen-
tal ones.

Let us give for the sake of completeness, the definition of BIBD (balanced incomplete block
design), or (b, v, 1, k, A)-configuration [11]. Let X be a finite set of v elements. A balanced incom-
plete block design (or simply block design) is a collection B of b subsets (blocks) of X, such that
every block has the same number k of elements, each pair of distinct elements appear together
in the same number A of blocks, where k < v—1, A > 0, and any element of X is contained
(replicated) in the same number r of blocks.

It follows immediately from the definition that r(k—1) = A(v —1) and bk = vr.

A symmetric balanced incomplete block design (SBIBD), (v, k, A)-configuration is a BIBD in
which the number of elements equals the number of blocks (v = b). They are the single most
important and well studied subclass of BIBDs.

A finite projective plane of order 7 is SBIBD with parameters v=n®+n+1, k=n+1,A1=1.

The theory of combinatorial designs in general and of finite geometries in particular
abounds with a mass of unsolved problems that are difficult to be investigated even with
modern methods of combinatorial mathematics. This also applies to the theory of projective
planes (see for example the "Prime-power hypothesis for the orders of the finite projective
planes” below). In particular, no sufficiently developed general theory of construction and the
structure of finite projective planes has been created to date.

In view of this, it seems quite natural that in an effort to create such a theory, mathemati-
cians turned to already known analogous constructions usually called "free objects" of the the-
ory in question. In our case, we are talking about "free projective planes”, which being infinite
themselves, can shed light on problems associated with finite projective planes.

Of course, the study of free projective planes is also of great interest by itself.

Free projective planes were first introduced by M. Hall in his fundamental paper [3] where
he considered their basic properties. Since then, these planes have become the subject of con-
stant interest of mathematicians studying abstract algebraic structures, group theory and their
representations, and so on [4, 5, 7? , 8]. There are also good surveys which one can use to get
acquainted with the basic concepts and achievements of the modern theory of combinatorial
geometries, for example, [6, 10-12]. As a general introduction to the projective geometry, one
can use e.g. [13-15].

This paper is devoted to computer modeling of the process of constructing free projective
planes — more precisely, to algorithmically finding their successive incidence matrices; and to
considering some numerical characteristics of these matrices.

Remarks about notations: If A is a (non-empty) matrix then diml1(A) (resp. dim2(A)) is a
number of its rows (resp. columns); [A];, j means its element at the entry (i, j); A; (resp. Al )
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means i-th row (resp. j-th column); diag(A) for a square matrix A means column-vector of its
diagonal elements; Total[A] is a sum of all elements in A. Moreover, we treat binomial coeffi-
cient (’ZC) and differential operators (derivatives, Laplace operator) as listable functions.

7n;,j is a column-vector with "1"-s only in two different positions i and j and all the rest
components equal to "0"-s.

As a rule we do not show the matrix format explicitly unless it is not clear from context.

E denotes identity matrix; J is a square constant matrix of (only) "1"-s; J* = J— E; {} de-
notes empty matrix; {(, ) means Euclidean scalar product; for a matrix A and real @ we define a

product a » A as follows:
aA, ifa#0
ae A = {

{5, ifa=0.

Ao B denotes the element-wise (Hadamard) product of matrices with the identical formats.
If A and B are matrices having appropriate formats then A| U B(resp. AU B) denotes a con-
catenation of A and B from the right (resp. from below) providing A|u{} = AU {} = A.

2. PRELIMINARIES

In this section we mostly follow the terminology and definitions of [6].

Definition 1. A configuration (or a partial plane [1]) is a pair IT = (P, L) where P is (nonempty)
set of points and L is a family of subsets of P called lines under the condition that the following
axiom is valid:

C1: Any two different points are incident with no more than one line.

Axiom C1 implies

C2: Any two different lines are incident with no more than one point in common.

As a rule in this paper we shall be interested only in the case of finite sets P.
Examples 1.

1. Desargues’ configuration directly related to the Desargues’ theorem (a classic example of
the projective theorem, completely independent of measurement) is well-known (see, e.g. [1],
[6]): Mark a point O, draw the three lines OA, OB, OC. Points A, B, and C can be anywhere on
these lines. Also choose any three points A/, B/, C’, A’ on OA, B’ on OB, C’ on OC. Join AB and
A'B’. These two lines intersect in point F In the same way, AC and A’C’ intersect in point E, BC
and B'C’ intersect in point D.

Desargues’ theorem for the usual real projective plane claims: points D, E, and F lie on a
straight line (see Fig. 1).

Desargues’ configuration consists of 10 lines, each incident to 3 points, from the other side,
there are 10 points, each incident to 3 lines. It has a strong symmetry: any of these 10 points
could be marked as O, there always will be a way (actually, several ways) to mark other points
so that the statement of the theorem remains true. There are 120 different ways of putting in the
letters on the picture without any changes in the printed statement being necessary [1].

2. Another classic example of the projective theorem, completely independent of measure-
ment is Pappus theorem. Pappus configuration we get by taking two lines and choosing three
points A, B, C on one line and three points A, B/, and C’ on another line (points should be dif-
ferent from the intersection point of this two lines.) Connect A with B’ and C’; connect B with
A" and C’; connect C with A’ and B'. Let us denote intersection of lines AB’ and A'B by D,
intersection of lines AC’ and CA’ by E, intersection of lines CA’ and C'A by F.

Pappus’ theorem: Points D, E, and F are collinear (see Fig. 2.)
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A B’ CI

Figure 2. Pappus’ configuration. Points D, E, and F lie on a straight line

Pappus’ configuration consists of 9 lines, each incident to 3 points, from the other side, there
are 9 points, each incident to 3 lines (cf. [1, 6]).

3. If in Definition 1 L = @ and |P| = m, m > 0 is an integer, then we have a pure m-points
configuration.

4.1If L consists of all pairs {a, b}, a,be P, a# b then Il = (B, L) is a full graph on m vertices.

5. Let IT" = (B L), m = 4 be a configuration with |P| = m and only one line A, (i.e. L = {A})
where |A| = m—2. This means that all points besides two of them lie on the (unique) line A. These
configurations are called standard [10] or Hall configurations and were first introduced by M.
Hall in his fundamental paper [3], p. 237.
Definition 2. Configuration IT = (P, L) is called a projective plane, if in axioms C1 and C2 the
words "...with no more than one..." are changed by "... exactly one...", i.e. in IT = (B, L) the follow-
ing axioms are valid:

P1: Any two different points are incident to exactly one line;

P2: Any two different lines are incident to exactly one point in common;
and in addition the axiom

P3: There exist 4 different points such that no three of them are collinear; in order to exclude
some degenerate configurations (cf. [10]).

The following simple statements can be easily proved for a finite projective plane [4]:

A) Every line is incident to exactly n + 1 points;

B) Every point is incident to exactly n + 1 lines;

O IPI=|LI=N=n*+n+1.

The number 7 is called the order of the finite projective plane.
Example 2. Fano plane: for n = 2 we obtain an example of a "smallest" (nondegenerate) projec-
tive plane, called the Fano plane. This plane contains 7 = 22 + 2 + 1 points and 7 lines, each line
contains 3 = 2+ 1 points and through each point pass 3 lines (Fig. 3).
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A F E

Figure 3. Fano plane — finite projective plane of order two

"Prime-power hypothesis for the orders of the finite projective planes" claims that always
n = p* for some prime p. To date, this hypothesis remains unproved.
Definition 3. If IT = (B, L) is a finite configuration with |P| = m and |L| = [, [ > 0 then the incident
matrix of IT is defined as / x m 0-1-matrix A = (a;,;) where
o {1, if point j is incident with line i )
b 0, if point j and the line i are not incident

in some chosen (and fixed) numerations of sets P and L.
Example 3.

1. Incident matrix of Desargues’ configuration (with proper numbering of points
O,A,B,C,A",B',C'",D,E,F)is

01 110O0UO0O0TO0TO0
1 00 01 00100
1 00 0010010
1 00 00 O0T1O0O01
01 00O0110O00O0
0010101 0O00O0
0001 11O0O0O0O0
01 00O0O0O0UO0T1]1
001 0O0O0O0T1TO0]1
0001 0O0O0OT1T1TQO0

We leave as an exercise for the reader to find corresponding numberings for Fig. 1.
2. Incident matrix of Pappus configuration with ordering points A,B,C,A’,B',C’,D,E,F
(Fig. 2) is

1110000 O0O0
00011 1O00O0O0
1 00 01 0T1TO0TPO0
1 00 001 001
01 010O01O00O0
01 00O01O0O0°1
0011 0O0O0T1O0
001 01O00O0O0°1
000 O0O0O0OT1T11
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3. Incident matrix of the Fano plane (with proper numbering of points A, B,C,D, E, F,G) is
cyclic:

01 10100
0 011010
0 0011 01
1 00 0110
01 00 O0T11
1 01 00 01
1101 000

Again, we leave as an exercise for the reader to find corresponding numbering for Fig. 3.
General properties of the incident matrices are as follows:
a. The i-th row A; of incident matrix indicates all points incident to the i-th line and

Total[A;]

n n

Y aij=) a;; @
j=1 j=1
= (A;, A;) = (number of points on the i-th line)

whereas for i # k the scalar product (A;, Ax) is 0 or 1 according to axiom C2.
b. Dually, the j—th column A/ of incident matrix shows all lines incident to the j-th point
and

Total[Al]

) )
Y aij=) a;; 3)
i=1 i=1

(Aj , Al > = (number of lines incedent to the j-th point)

whereas for j # k the scalar product (A/, A7) is 0 or 1 according to the axiom C1.

c. So, the i-th diagonal element of the product AAT equals (number of points on the i-th
line), whereas the elements outside the diagonal are 0 or 1. Of course, mutatis mutandis this is
valid also for AT A. Obviously

Tr(AAT) = Tr(AT A) = Total(A) 4)

d. If all the outside-diagonal elements in AA” (resp., AT A) are equal to 1, we say that config-
uration is line-wise ample (resp. point-wise ample).

Clearly, if IT = (P L) is a projective plane of order n then it is both point-wise ample and
line-wise ample and its incident matrix is a square N x N 0-1-matrix such that

AAT = ATA=nE+] (5)

(cf. for example, [4]).
Example 4. These properties can easily be checked with matricies from the Example 3. For
example, for the incident matrix of the Fano plane (n = 2) we have

3111111
1311111
1131111

AAT=[1 11311 1]
1111311
1111131
111111 3
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while for the incident matrix of the Pappus configuration we have

o

AAT

Il
O e e el e e - O W
— o= O O = W
= O N O WH = =
—_ O WO
— O W N O
— = W o OO K~
W = = O = = =
W e e e e = = OO

O = o = =W

3. FREE PROJECTIVE PLANE GENERATED BY CONFIGURATION

Let 1y = (Py, Ly) be some (initial) configuration. The free projective plane generated by Il
is defined by the following process:
1. Let I1; = (Py, L) be a new configuration where L; = Ly and P; = PyUvPy

vPy ={(a)(b)|la,b € Ly,a and b are not incident in ITg} (6)

i.e. every pair of non-incident lines defines a new point named (a) (b) which is "intersection" of
lines a and b. Evidently II; is line-wise ample.
2. Let [ = (P», Lp) be a new configuration where P, = Py and Ly = Ly UvL;

vL, ={(a)(b)|a,b € P;,a and b are not incident in IT;} @)

i.e. every pair of non-incident points a and b defines a new line named (a)(b) which "connects"
points a and b. Evidently II, is point-wise ample.

Iterating this construction we get a sequence (finite or infinite) of configurations
{[lp, 1y, 1,113,114, 5, ...,I1,,...} in which for r even we add new points to II,, as in item
1 and for r odd we add new lines to I, as in item 2 and get next configuration I1,;, r = 0.
Proposition 1 (see [6]). If IIp contains 4 different points no three of which are collinear then
IT= fr(p) =U, [k is a projective plane.

This plane is said to be the free projective plane generated by Il,.

Remarks:

1. If an initial configuration Il is finite and has isolated ("empty") point(s) (resp. "empty
lines") then after the first (resp. "second") step of the above algorithm such point(s) (resp. "lines")
will vanish, so in order for the computer realization of the algorithm to be implemented cor-
rectly, we must always require that the initial incident matrix (and hence all the next) does not
contain zero-columns (resp. "zero-rows").

2. The construction of "names" for new points/lines in the above definition gives rise to at-
tempts to consider free projective planes as commutative but not associative universal algebras
[?1
Example 5.

1. If TIy is a projective plane then evidently fr(Ilp) = Ilp.

2. If |ITp| = 3 and | Lg| = 0 then fr(Ilp) is called a "projective plane of order 7 = 1" (see Defini-
tion 2, p.1) and it is a plane over the field of one element (Fig. 4, left). This plane is referred to as
"degenerated" because Axiom P3 evidently is not valid for it. Its incident matrix is cyclic.

The following theorem of M. Hall (see [3]) explains the importance of Hall configuration 4
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1
1 1 0
0 1 1
1 0 1
3 2

Figure 4. Projective plane of order n =1 (left) and its incident matrix (right).

1) Let Iy is any non-degenerate configuration but not a projective plane. Then fr(Ily) con-
tains fr(IT*) as a subplane. Moreover, such plane is never desarguesian.

2) A fr(I"), m = 4 contains frII"*).

Everywhere in what follows we deal only with the Hall configuration IT%, i.e. fr(I1%) =
{H‘;} r=0,1,2,..., thatis "free equivalent”(see [3]) to a pure configuration on 4 points, i.e., a full graph
with 4 vertices.

4. MATRIX APPROACH

According to what was said at the end of previous section we begin with configuration
Iy = I1* (which is zero-step, s = 0, of our algorithm) with incident matrix

A

—_— - - O O O
OO~ K= K~ O
O - O = O =
—_ o O O = -

which corresponds to the configuration 4 from Example 1 with m = 4. This configuration (tetra-
hedron) is shown below on Fig. 5 (left).
Evidently here dim1(Ag) = Ag =6, dim2(Ag) =Py =4.

Since
211011
121101 311 1
112110 1 31 1
AoAg:011211’AgA°:1131
1011 21 1 11 3
11011 2

this configuration is point-wise ample (any two different points are incident), but is not line-wise
ample because exactly 3 pairs of lines, namely 1,4, 2,5 and 3,6, have no points in common.

According to item 1 of the general constructing of fr(Ilp) at the next step s =1 we must add
to IIp vPy = 3 new points, namely (1)(4), (2)(5) and (3)(6) (see Fig. 5 (center)), that means that
we must concatenate (from the right) to Ay three new columns numbered respectively 5, 6, 7,
whereas the number of new lines v Ay = 0.

So, here dim1(A;) = A; = Ag =6, dim2(A;) =Py +vPy =4+ 3 =7 and the matrix of the next
configuration I, (see Fig. 5 (right)) is
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1
0
1
0
1
0

_o O O =

S O~ O O -
S = O O = O
—_ o O = O O

00
0 1
0 1
A=l
1 0
1 0
4
(1) (2) (1)(4)
3 3) 2 3

\
(3)(6)

2 3 (3)(6) 2

Figure 5. Initial configuration Iy = I1* (left) and two steps of the algorithm: adding new points (center)

and new lines (right)

Note that positions of "1"-s in the concatenated columns are exactly 1 and 4, 2 and 5, and 3

— = O

—_ e e QO

— o = D e

and 6.
Going over to the next step s =2 we find that

3
1
AAl = 1
1
1

3

1

1

Ala =1

1

1

1

1

1

= D e

Pt O b

1

— = W = =
— W
W = = =

O N~ = =
N O = = =
N O O H = = =

So, here dim1(A>) = A+2=A; +vA; =6+3=9,dim2(Ay) =P, =P; +vP; =7+ 0 =7 and the
matrix of the next configuration (see Fig. 5 (center)) is

(00 1 1 100
0101010
0110001
1100100
A,=[1 010010
1001001
0000T1T10
0000101
0000011

22
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Now it is not difficult to describe the general case for any step s >0:
al) If s=1 mod 2 we add new points

vPs_1 = (number of non-incident lines at step s—1)
1
= 5 (mumber of "0"-s in As_lAST_l) (8)
_ As1 —Total diag(AsT_lAsfl)
2 2
As_ AT A,
= s21 —Total |[ 7517571 ]

whereas clearly vA;_; =0.
Proof of (8): The first and second equalities are evident

Furthermore, Toml[ dmg At )] = Toml[ )] because ( ) = 0. At last, (AS 1) is

equal to the all pairs of different lines at step s — 1, whereas Total [(dmg (AZHAS‘I))] is equal to

such pairs of lines which are already incident at this step (see item c of general properties of the
incident matrices, p. 2).

For example, for s = 1 we get vPg = (3) —4-(3) =3, since Ao =6, diag(Al Ag) = (3333).

In other words, here we get the A x Pg-matrix Ag, where Ay = Ag_y, Ps = Ps_1 +vPs_1, by
concatenating from the right to A;_; one by one new vP_; columns.

So, in this case we get a formula (we remind that 0 e a = {}):

Ag= As1l U (1- [As—1A5T_1]i,j)'175,j) 9

2<i<A,isj<A

Dually,
a2) If s=0 mod 2 we add new lines

vAs_ (number of non-incident points at step s—1

1
= 5 — (number of "0"-s in AT | A;_1) (10)

(Ps_l) —Total ]
2 2

P,_ As1 AT
STH _rotal || s
2 2
whereas clearly vP;_; = 0.

For example, for s =2 we get vA; = (5) —6-(3), since P, =7, diag(A1AT) = (333333). So, in
this case we get a formula:

(diag(As_lAsT_l)

A=Ac U (a-1alacnpend). a
2<i<Agqi<j<As

Formulas (9) and (11) give rise to the first variant of our algorithms.
First four steps are illustrated on Fig. 6.
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a) e(ef1(1 b) e|o(1|1 e)a191 o[i[e[0[e |0
a[1]1]e Glo[i]o]e|e

o|1|e|1 el1l0]|1 1[1i]e[e elefo[1]e]e
Tfe[i]e AEBEBE

o|1]11)|0 111110 1]efe]1 olelefe|e|1
alelele|z|z]e|e(e[1[e|o[T

1|]1]|0]0 1111010 aleele|ile|z]o|1[ele|1]e
alelelele|z|z|L]o[e[L]o]e

1|0]1]|0 1101110 1[e[e]e[e[e[e[1]e]e[e]e[e
1lele[1 Tlelol1 e

c) d) o(1|(o|o|e(o|o|1|e|e|e|0]|0
G[i[e[e]o]e|e[e]e]o]e 1o

ele[1]1 elef1]1 lle|e|e|o |0 e
el1fe|1 ef1lef1 ol1|efe]e]e e e
o[1(1]e e[1]1(e olo|1]0[0]0]| [lefehioletetsletelrole
1[1]e]e 1[1]e]e olofe|1]e|e]| Lrfhllllitll
1|e(1]e 1|o(1]e elee|e|1]0| Llhphhpkillls
1lefe|1 1lefe|1 0](0]0]0|0|1| PEEEEEFFEEERE
Glefele]o]e|ele|i]o]1|e e

0|0|0|0 o|le|le|le|l1]l1]le|0|o|1|o|0]|1 olelofelelelelo[1[e]e|e|T
o|lo(o|o|e(o|e|efe|1|1|e]|0

o(o|le|o|1|o|1 9|o|o|ef1|e|1|o|l|o(o|1(0 0 ] A = T e B
o|lo(o|eo|efo|e|efe|e|1|1]|0

o(e|efe|jo|1]|1 o|le|o|le|@|1|1|1|0|0|1]|0|0 e B EE e B B EE
Glefele]o]e|e[e]e]o]o 1|t

Figure 6. Incident matrix of initial configuration (a) and four first steps of the algorithm: three new points
added (b), three new lines added (c), 6 new points added (d), 24 new lines added (e)

5. BILINEAR FORMS APPROACH

Let m = {p;}52, and A = {[;}72, be two sets of independent variables for points and lines
respectively.

For any step s = 0 we introduce a bilinear form F; = Fs(, 1) = 7T A where Ay is an inci-
dent matrix constructed on step s (see Sec. 3) and n and A are initial segments of the infinite
sequences of variables 7 and A having appropriate lengths. For example, for s = 0 we have
= {Pi}?ﬂ. A= {li}?zl and

Fy = Lpi+Bpi+lpr+bpr+lspr+Lpr+lLips+isps+Isps+lips
+hpy+isps (12)
= hL(ps+pa)+DLp2+pa) +B(p2+ p3)+ L(p1+ p2) + I5(p1 + p3)
+1ls(p1+ pa)
= prlla+is+le) + pa(la+ i3+ 1)+ ps(h+ I3+ 15) + pa(ly + 12 + I).

Now it is clear that also in general case Coef ficient[Fs,l;] = %—I;; is a linear form in 7 repre-

senting the i—th row of Ag; Coef ficient[F, p;l = gﬁf is a linear form in A representing the

j—th column of A;. '

Also it is clear that two lines, [; and I with 1 < i,k < Ag, i # k are not incident iff. the
linear forms %—IZS and g_ll:,: have no variables in common that implies that in this case the Laplace
operator in 7

O0F; OF, 0% (8F, OF
n(_S._S):Z_(_S._S)zo 13)
ali alk penapz al,- 6lk
and otherwise
(6FS 6FS)—2 (14)
ol oal.) T
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It’s clear that if i = k then

0F;)?
An ((a_ls) ) =2 (number of points on i — th line) = 2 [diag(A;A;)], (15)
i

For example,

0F, apo) 4 52
A\on o) T + + =0,
n(all 0ly ;ap% ((p3 + pa)(p1+ p2)
whereas o
0F apo)
A YA + + :2’
ﬂ(all 6[2 ;ap% ((p3 p4)(p2 p4))
and

aFO)Z 4 2 )
A (— =Y —((ps+pa?)=2-2=4.
|\ ;ap%(pf‘ ps)?)

Obviously that formulas dual to (13), (14) and (15) also are valid mutatis mutandis.
Using formulas (13), (14), (15) and their duals it is easy to verify matrices equalities

1 OF;\®? r 1 OF;\®? T
EAT[ ﬁ :ASA —A/l E :AS AS’ (16)

where % = grad)(fs), % = grady(fs), the Laplace operators are supposed to be listable and
®2 means tensor square.

Now we are going to write the recurrent formulas from step s —1 to step s:

Formulas (8) and (10) may be written in terms of bilinear forms as follows:

vP,_1= A1 Total |Binomial lA (aFSl)Z 2] a7
s—1— 2 2 T 6/1 » )
Ps—l . . 1 an—l 2
VA 1 = 9 —Total |Binomial EAA pm 20 (18)

As to a recurrent relation between forms F;_; and F; here we have
Fo=Fs 1 +vFs_;, s=1. (19)
For brevity of writing formulas for we use the reduced Laplace matrices A, (Fs) = J— J* o

®2 — ®2
%An ((%) ) and Ay (Fs)=J—-J%o %AA ((%f;) ) For example, if s = 0 then

211011
121101
EA((@)M)_ 112110
27"\lor) )70 11211
1011 21
110112
and
000100
000010
s 0000 01|
010000
001000
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ie.in A_,,F(xo) all non-zero elements become "0"-s and all zeros become "1"-s.
Then it is not difficult to check that
for odd step, s=1 mod 2,

VFs_1 = > (Ui + 1)) podi,j) {A_HJ ” where 0 (i, j) = Ps_1+ ) .lA_nJ ij (20)

1<isAg,isjsAg ! a<i,f<j

for even step, s=0mod 2, s>0

vF; 1= Z (pi+Plsi,j) {A_AJ ., whereo(i,j)=As_1+ Z |Ar) ij- @D
1<i<P,_,,i<j<P,_ bl as<i,f<j
For example, if s =1 then vFy = (I + ) ps + (la + I5) ps + (Is + lg) p7 and Fy, = Fy + vFy = L1 (p3 +
pa) + L(p2+ pa) + I3(p2 + p3) + La(p1 + p2) + Is(p1 + pa) + (1 +14) ps + (I + I5) pe + (I3 + I6) p7).
Formulas (19), (20), (21) are exact analogs of those (9) and (11) but the "exotic" oncatenations
of matrices are changed by usual polynomial additions.
These formulas also give rise to alternative algorithm for recursive construction of f r(I1%).

6. IMPLEMENTATION

As was said above we used matrix and bilinear forms approaches.

The first difficulty in programming was caused by the requirement to avoid zero-
columns/rows in incident matrices as well as "fictitious" variables in bilinear forms.
This difficulty is surmounted with special procedures for numeration of new constructed
columns/rows of matrices and new variables of bilinear forms.

A more serious obstacle is the (above-mentioned) fact of the very fast growth of matrices’
formats. Though those are very sparse 0-1-matrices, the programming tools for such matrices
provided by Mathematica proved insufficient for our purposes, so computer memory resources
became exhausted quickly.

As a result, we managed to calculate only 7 members of the sequence u, =vP,+vA,;, n=0
(note that one of the two summand in "u," is always equal to 0):

3,3,6,24, 282, 37233, 684792168, ....

It is easy to check empirically that this sequence grows asymptotically as a double exponent
of n (Fig. 7).

log (log (1))
3.0
25
2.0
15
1.0
0.5

123455?n

Figure 7. Number of elements grows as double exponent (linear on log(log) scale

Though we failed so far to find a general formula for the number of new elements on each
step, we can find the (rather rough) upper bound using (4.1) and (4.3): ignoring second terms we

immediately get
Ps
, VA1 < ( 82 )
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KOMI'IbI-OTepHOE MoAennpoBaHMe KOHEYHO-NOPOXAEHHbIX CBO60,CI,HI:>IX NPOEKTUBHbIX naockocrten

Assuming vP;_; = (A‘;) and VA, = (Pgl) we have
As=As_1,Ps=Ps_1 +vP,s_; for s even,
and
Py =Ps_1, Ag=As_1 +vA,_; for s odd. See upper line on Fig. 8.
We can improve this upper bound by taking into account that all diagonal elements in (4.1) and
(4.3) always are = 3. We have

A Py
vPs_1 < 5 —3Ps_1, VA1 < 5 —3A; 1.

In both cases we get double exponential growth. These two lines together with our result are
shown in Fig. 8.

3.5
3.0
2.5
2.0
1.5
1.0
0.5

Y

2 3 4 5 6

Figure 8. Number of elements (lower line) and two upper bounds
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KOMNbLKOTEPHOE MOAE/NNPOBAHUWUE KOHEYHO-MOPOXXAEHHbIX
CBOBOAHbIX MPOEKTUBHbBIX NIOCKOCTEM

lorvH H. 4., Muanapu A. Al

1yHl/lBepcmeT CB. leoprug, 'peHaga, Bect-NHans

AHHOTaUMsA

PaboTta mocBsiLLeHa KOMMbIOTEPHOMY MOZAE/NVMPOBAHMIO MpoLiecca NoCTpoeHUs cBobo-
JHbIX NMPOEKTMBHbIX MJIOCKOCTER, nan 6onee TOYHO, aNrOPUTMUYECKOMY HAXOXAEHWIO
X NnocnefoBaTeNbHbIX MaTPUL, UHUMAEHTHOCTU. PaccmMaTpmBaloTCs Takxke HekoTopble
LLeNI0UNC/IEHHbIE XapaKTePUCTUKA 3TUX MaTpuUL. MaTpuuHbIli MeTo, a Takke MOAXOZ,
NCNoNb3yroLmii 6uanHeHble Gopmbl, NPUMEHSAITCA ANS U3yYeHWs TEMMOB pPocTa Yu-
CNa HOBbIX 3/1eMEHTOB (TOYekK, IMHWNIA) B npoLecce No3TanHOro NoCTPOeHWs NpoeKkTUB-
HOW MNOCKOCTW, HaYMHas ¢ KoHpurypauum M. Xonna 1%, Y1Cno HOBbLIX 3/1EMEHTOB pa-
CTeT aCUMNTOTUYECKM KaK ABOIHas 3KCNoHeHTa (nMHelHo no log(log) wkane.) OueHka
CBepxy TakxKe gaeT ABOWHOWN IKCMOHEHLUMANbHbIA POCT.

KnioueBble cnoBa: cB0604HbIE MPOEKTUBHbIE /I0CKOCTY, KOHEYHbIE FeOMETPUY, KOM-
6UHATOPHbIE CXEMB.
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