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1.  INTRODUCTION

Fast Fourier Transform (FFT) is used by multiple communication applications such as 802.11,
802.16 and their modifications. FFT processor performance is crucial for overall performance of
these applications. A common approach to FFT processor architecture is an in-place memory-
based one. Use of this approach guarantees that for each butterfly or group of butterflies both
inputs and results are stored in the same memory locations, so for FFT sampled at N points a dual-
port multibank memory storing N complex words can be used. Since memory dominates area and
power of memory-based FFT processor, such minimization of memory size is crucial for the
processor to be efficient.

One butterfly should be initiated every clock to maximize throughput for given butterfly size.
To do so each wing of the butterfly should read and write non-conflicting memory ports. This
requires conflict-free bank assignment.

Johnson [1] suggested an in-place addressing strategy and architecture that allows launch of
one butterfly per clock for pure-radix FFT.

Hsiao, Chen and Lee [2] suggested an in-place addressing strategy and architecture for arbitrary
mix-radix FFT launching one butterfly per clock.

Jo and Sunwoo [3] suggested an in-place addressing strategy and architecture for radix 2/4
FFT launching 2 radix 2 butterflies in radix 2 stage that utilizes 2 single-port N-sized memories.

Xilinx LogiCORE IP FFT [4] and Altera MegaCORE [5] use radix 2/4 memory-based burst
I/O architecture with both bit-reversed/digit-reversed and natural order of inputs and outputs.
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Abstract

A method of implementing in-place continuous-flow mix-radix FFT on multibank memory
with additional constraints is investigated. Using this method four novel FFT architectures are
proposed. Parallel butterflies in small radix stage allow substantial speed-up for mixed radix
FFT. The single-port memory architecture provides in-place strategy for libraries without dual-
port memory, effectively reducing memory requirement by 50%. Self-sorting architecture allows
using overlapped I/O for natural order FFT reducing initiation interval up to 30%. A combined
approach is also proposed.
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Xilinx LogiCORE IP FFT uses a method for radix 2/4 FFT launching 2 radix 2 butterflies in
parallel, based on the RTL evaluation.

A flexible approach that generalizes results presented in above works is proposed. Using this
flexible approach a few novel FFT processor architectures with improved performance are
suggested.

For FFT sampled at N points, where  1−⋅= nRrN , 2r ≤ R  and  R, r  are radixes of butterflies
used in the FFT, the simple approach proposed by Johnson [1] is to calculate radix  r  butterflies
using radix  R  butterfly engine with redundant inputs set to zero. It is possible to significantly
speed up the calculation by using radix R butterfly engine to calculate multiple radix  r butterflies
simultaneously. Such an improvement is proposed by Jo and Sunwoo [3] for  r = 2, R = 4. We
generalize the approach for any  r, R  such that  R  is divisible by  r.

A variation of the method that facilitates use of single-port memories instead of dual-port
memories while still launching multiple small-radix butterflies per clock is suggested. Replacing
dual-port memories with single-port memories while still granting the performance improvements
allows area improvements as well. Notice that use of this architecture allows creation of in-place
FFT processors with in-place addressing on libraries without dual-port memories, while usually
two single-port memories of size  N  are used. Therefore, use of this approach allows 50 % reduction
in memory area for libraries without dual-port memories.

Use of either decimation in time (DIT) or decimation in frequency (DIF) decompositions leads
to input or output having different order. Therefore if the order is important, a digit reverse must
be performed before or after the FFT calculation. It requires additional shuffling stage with complex
memory access pattern. So it is desirable to blend the shuffle operations with computations.

Hegland [6] proposed generalized self-sorting in-place FFT decomposition summarizing
previous works on the topic by mixing in-place transposition stages with computation stages. He
used symmetric two-sided decomposition combining DIT and DIF. A similar method using
asymmetric stage arrangement is proposed in this paper. Due to asymmetric property it is mapped
to DIT(DIF) FFT processor architecture with only change in memory generation preserving all the
benefits stated above. Using of this method allows up to 30 % reduction in clocks of initiation
interval of burst I/O normal order FFT radix-4 of length 1024 compared to Xilinx LogiCORE IP
FFT.

In section 2 a convenient notation for FFT addressing is given. A general formula for bank
assignment is proposed. In section 3 a FFT processor architecture utilizing dual-port memories is
proposed. In section 4 a FFT processor architecture utilizing self-sorting addressing is proposed.
In section 5 a FFT processor architecture utilizing single-port memories is proposed. In section 6
a combination of self-sorting and single-port approaches is considered. Proofs of theorems are
omitted in the sections and can be found in the appendix.

2.  NOTATION

In this section a convenient notation for FFT addressing is proposed. For simplicity introduce
the following string substitution: jiiijii dddd +++ = ...,,,][ 1, , ijijiiji dddd ...,,,][ 1, −+++ = .

If sdd ...,,0  are, accordingly, srr ...,,0  radix digits, then let ]...,,[ 0dds  be a mix-radix number
constructed by concatenating the digits. If any id  is a radix 1 digit, define  =−+ ]...,,,,...,,[ 011 ddddd iiis

]...,,,...,,[ 011 dddd iis −+= . This boundary case appears when proofs for mix-radix are applied for
pure-radix case. More formally, 12101020100 ......]...,,[ −⋅⋅⋅⋅⋅++⋅⋅+⋅+= sss rrrrdrrdrdddd .

Consider a FFT sampled at 10 ... −⋅⋅= nrrN  points decomposed into radix 10 ...,, −nrr  stages,
where 1+≤ ii rr . Note: such ordering for radixes is not mandatory, but is used to simplify proofs
and explanations.
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Calculation of FFT can be viewed as two nested loops: outer loop iterating over stages  and
inner loop iterating over butterflies (or butterfly groups for stages with multiple butterflies executed
simultaneously) within one stage.

Let )...,,( 01 kkFFT n−  stand for result of the FFT on input numbered ]...,,[ 01 kkn−  ( 0,..0 krk ii ∈
being the least significant digit). Define a radix  butterfly operation

∑ −
=

⋅
− ⋅= 1

001 )()...,,(
r

k
ks

rkrs WfffB . (1)
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Let )][,,]([ 0,12,01 −−−+ cccnc kkdF  be stage ñ output numbered ][ 0,12,0 ][,,][ −−− cccn kkd , where

ki are already processed digits and di are digits that are yet to be processed, ii rk < , 1−−< ini rd ,

)...,,( 100 −nddF  are input sample points. Then )...,,()...,,( 0101 kkFkkFFT nnn −− = .
For DIT decomposition the FFT stage formula is
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For DIF decomposition the stage formula is is

( ) )...,,(][,,][
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0,12,01
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−−

−−⋅
−−⋅⋅−−−+ ⋅=

cnrck
cndck

cnrrcccnc wwBWkkdF , (4)

( )0,12,0 ][,,][ −−−= ccncu kudFw . (5)

DIT decompositions leads to digit reverse order of the input points, and DIF decomposition
leads to digit reverse order of output points.

Notice that formulae for DIF and DIT differ only in whether multiplication by twiddle factors
is performed before or after the butterfly operation. Choice of decomposition type is insignificant
further, so for convenience suppose DIF is used.

A radix cr  butterfly in stage  utilizes inputs with numbers ]...,,,,...,,[ 0111 kkkkk cccn −+− , where

ck  varies from  0  to 1−cr . Then the butterfly can be numbered by ]...,,,...,,[ 0111 kkkk ccn −+− .

The approach adopted in this paper implies use of memory split into 1−nr  banks in order to

allow pipelining butterfly execution: each radix  r  butterfly operation requires  r  memory reads
and  r memory writes. Define bank and address assignments depending only on sample point
numbers (it is convenient to use such in-place notation even for self-sorting FFT, which is not
actually in-place). Let )...,,( 01 kkm n−  be bank assignment and )...,,( 01 kka n−  be address assignment

within the bank for number ]...,,[ 01 kkn− . In this paper any correct address assignment may be

used, for simplicity suppose everywhere ]...,,[)...,,( 0201 kkkka nn −− = . Let

]...,,,,...,,[)],...,,,...,,([ 01110111 ddddddddddI ccnccnc −+−−+− = , (6)

This notation can be used to conveniently separate butterfly number from wing number:

))],,,...,,([(),...,,( 01111011 kkkkkImkkkm ccncn −+−− = . (7)

While there is a dependency between subsequent stages, butterflies within one stage are
independent from each other and therefore can be calculated in arbitrary order. Suppose cq
butterflies are run simultaneously in stage c. Stage n � 1 obviously has only one butterfly run
simultaneously, because only 1−nr  memory banks are available. For any stage c that runs cq
butterflies per clock the inner loop iterates over butterfly groups numbered

]...,,,,...,,[ 01121 kkkkk cccn −++− , where 







<< +

+
c

c
cii q

r
krk 1

1, .
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Let )...,,,,,...,,( 011121 kkkkkkT ccccnc −+++− , where ii rk < , 







< +

+
c

c
c q

r
k 1

1 , cc qk <+1 , 111 ],[ +++ < ccc rkk

be number of 1+ck �th butterfly executed in ]...,,,,...,,[ 01121 kkkkk cccn −++− �th iteration of loop

iterating over butterfly groups in stage c. Essentially 1+ck  is split into ],[ 11 ++ cc kk  and 1+ck  is used

as a part of butterfly group number, while 
1+ck  is used to enumerate butterflies within the group.

The trivial traverse order for all stages is

]...,,,,,...,,[)...,,,,,...,,( 011121011121 kkkkkkkkkkkkT ccccnccccnc −+++−−+++− = . (8)

Let ])...,,([ 01 kkM nc −  be memory bank used in iteration  k  of  butterfly loop in stage  c. If  q

radix cr  butterflies are run in parallel, cM  can be obtained as

))),...,,,,,...,,(((])...,,([ 01112101 cccccnccnc kkkkkkkTImkkM −+++−− = . (9)

The hypothesis we will exploit is that the following bank assignment is conflict free and
allows multiple butterflies per clock in small radix stages for mixed radix FFT on dual-port memories
with trivial traverse order

1
1

001 )...,,( −
−
=− 


 ⋅= ∑ ni

n

i in rmodkgkkm . (10)

Here ig  are some constants depending on radixes chosen for stages.
This bank assignment generalizes bank assignments proposed by Johnson [1], Hsiao, Chen

and Lee [2] and Jo and Sunwoo [3]. It is also used as base for self-sorting and single-port memory
architectures.

3.  FFT  PROCESSOR  UTILIZING  DUAL-PORT  MEMORIES

Consider a FFT sampled at 1−⋅= nRrN  points using radix r, qrR ⋅=  butterfly operations,
i. e. Rrrrr n ==== −110 ..., . It can be calculated utilizing a FFT processor with the following
architec-ture similar to one presented in [1]. The corresponding block structure is shown on
Fig. 1. It consists of Address Generation Unit (AGU), Random Access memory (RAM), Switchable
Interconnect (IC), Butterfly Processing Unit (PU), and twiddle memory.

The key feature of the architecture is AGU implementing addressing strategy that allows
execution of q butterflies simultaneously in radix r stage. Launching multiple butterflies

Fig. 1. Architecture for a FFT processor utilizing dual-port memories
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simultaneously makes radix  r  calculation  q  times faster, therefore granting significant performance
improvement.

The AGU may use trivial traverse order (8) and bank assignment

Rmodqkkkkm
n

i in 


 += ∑ −
=− 0

1

001 )...,,( . (11)

Notice that the bank assignment (11) is a special case of formula (10) and equals to bank
assignment introduced in [1] for  r = R.

Theorem 1. The bank assignment  m (11) with trivial traverse order  cT  (8) guarantees no

conflicts for dual-port memory FFT processor.

Values of  n  and  r  can be adjusted at run-timne to use one FFT processor to calculate trans-
forms (and reverse transforms) of different sizes. Performance gain in comparison to other
modifications of Johnson�s approach for some sample lengths is addressed in a table below. Notice
that the numbers are estimates: pipeline length and, probably, some other constant modifiers must
be added in order to obtain real clock count. Although only values for power of 2 radixes are listed,
the approach can be used with non-power of 2 radixes as well Tab. 1.

4.  FFT  PROCESSOR  UTILIZING  SELF-SORTING  ADDRESSING

Consider a FFT sampled at 1−⋅= nRrN  points using radix r, R butterfly operations, i. e.
Rrrrr n ==== −110 ..., , where qrR ⋅= . Both of common decompositions DIT and DIF lead to

either input or output having reversed digit order, i.e. in order to obtain the result an explicit digit
reverse operation must be performed. An improved architecture that mixes digit reverse into a FFT
processor is proposed. So no explicit digit reverse is required, while it is still running multiple
butterflies per clock in radix  r  stage.

The same bank assignment (11) as in section 3 is used, first 
2

1+n
 stages use trivial traverse

order (8) as well. However, for radix  R  stages outputs of butterflies are transposed: output numbered

],[ ww  is written as if it was numbered ],[ ww , where 1..0 −∈ rw , qw ..0∈ . Starting from stage

2
1+n

, a permutation of outputs is introduced: for stage c, where 1−≠ nc , butterfly with inputs

numbered

   ]...,,,,,,,...,,,,,,,...,,,[ 02211111111 kkkkkkkkkkkkkkk cncncncncncnccccccnn −−−−−−−−−−−−++−− . (12)

Outputs are stored in memory addresses calculated as for outputs numbered

  ]...,,,,,,,...,,,,,,,...,,,[ 02211111111 kkkkkkkkkkkkkkk cncncncccncccncnccnn −−−−−−−−−−−−++−− . (13)

Notice that which half of the stages performs reverses is insignificant (Fig. 2).
The resulting FFT processor has the following architecture (Fig. 3).
Consider the following traverse order

 One butterfly per clock Proposed approach 

 Clocks Radix Clocks Radix 

512-point 192 8 192 8 

1024-point 896 2/8 512 2/8 

2048-point 1280 4/8 1024 4/8 

4096-point 2048 8 2048 8 

Tab. 1. Estimated clocks count for different modifications of the approach
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=−−−−−−−−−+− ),,...,,],,[],,[...,,,0,...,,( 011211111 kkkkkkkkkkkT cncncncncnccnc

    ],,,...,,],,[],,[...,,,...,,[ 112110111 −−−−−−−−−−+−= cncncncncncnccn kkkkkkkkkkkk , c < n � 2, (14)

],,,,...,,,[)],,[],,[...,,,0,( 121023101122312 kkkkkkkkkkkkkkT nnnnn −−−−− = , (15)

],,...,,[),,...,,,0( 012201221 kkkkkkkkT nnn −−− = . (16)

Theorem 2. The bank assignment  m  (11) and traverse order cT  (14), (15) guarantee no

memory conflicts for self-sorting FFT processor.

5. FFT  PROCESSOR  UTILIZING  SINGLE-PORT  MEMORIES

Consider a FFT sampled at 1−⋅= nRrN  points using radix r, R butterfly operations, i. e.

Rrrrr n ==== −110 ..., , where qrR ⋅=  is even. As shown in section 3, an FFT processor providing

significant performance improvements over pure-radix approach suggested in [1] can be constructed.
The AGU can be further modified in order to allow use of  2R  1rw memory banks without increase
of overall memory words count. Replacing dual-port memories with single-memories improves
the architecture in terms of area while preserving the performance advantage over [1].

The modified FFT processor has the following architecture (Fig. 4).
The absence of memory conflicts is guaranteed by select of such memory assignment and

traverse order that read/write operations for memory banks interleave in subsequent clocks. Let

Fig. 2. Delay of write operations in stages performing reverse

Fig. 3. Architecture for a self-sorting FFT processor
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Rmodmodkkkkm
n

i in 2)2(2)...,,( 0
1

201 


 −= ∑ −
=− . (17)

Let traverse order for stage 0 be

]),...,,[),,...,,( 11
1
22111210 RmodrkkkkkkkkkT

n

i inn ⋅++= ∑ −
=−− , (18)

For other stages trivial traverse order is used:

)...,,,,,...,,[)...,,,,,...,,( 011121011121 kkkkkkkkkkkkT ccccnccccnc −+++−−+++− = . (19)

Theorem 3. If the design�s pipeline length is odd, the bank assignment  m (17) used with

traversal orders cT  (18), (19) guarantees no memory conflicts for single-port FFT processor.

Notice that since every butterfly in radix  r  stage utilizes all possible values of 0k  and absence
of  conflicts in radix R stage is guaranteed by interleave of 20 modd  values for subsequent
butterflies, it is required to wait for the pipeline in radix  r  stage to finish before launching the first
radix R stage.

6.  SELF-SORTING  FFT  PROCESSOR  WITH  SINGLE-PORT  MEMORIES

A self-sorting architecture on single-port
memories is proposed for N-points FFT
processor. It combines benefits of architectures
proposed in section 5 and section 4. The
proposed processor has a following architecture
(Fig. 5).

Consider a FFT sampled at 1−⋅= nRrN
points, where qrR ⋅= , 3≥n , r  is even. Let  p
be pipeline length, suppose  p  is odd. The idea
is to combine approaches presented in the
above sections: have read/write operations
interleave for each memory bank and eliminate
external digit reverse by reversing digits in

stages starting from stage numbered 



 +

2
1n

.

Since addressing for self-sorting FFT does not

Fig. 4. Architecture for a FFT processor
using 1rw memories

Fig. 5. Architecture for a self-sorting FFT processor on single-port memories
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differ from plain FFT in stages that don�t
perform digit reverse, the substantial task is to
combine the approaches in digit reversing
stages. It can be done by grouping butterflies
into batches of size 2R in a specific manner. In
single-port approach no read/write conflicts are
granted by interleave in some digit ik . In stage
one size 2R batch is constructed from two size
R batches covering all values of 1, −−cnc kk  such
that values of ik  interleave between the batches
(butterflies from different batches interleave).

Similarly to self-sorting approach for dual-

port memories outputs of radix R butterflies are transposed: output numbered ],[ ww  is written as

if it was numbered ],[ ww .
Then with use of pipeline delay of length 2R � 1 � p  there can be no read/write conflicts and

no write before read conflicts (by batch construction).
However, it can be proven that in order for this approach to be successful in the last stage for

radix 2, the bank assignment must be invariant with respect to switch of the last digit 1−nk  and the
first digit 0k . The bank assignment used for single-port memories does not comply with this
requirement and heavily relies on asymmetry to grant read/write operations interleave. Therefore,
a new bank assignment is required (Fig. 6).

The proposed bank assignment is

Rmodmodkk
kk

kkkm n
nn

i in )2)(
2

2
2

22)...,,( 10
102

101 −
−−

=− ++
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
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

+= ∑ . (20)

It is easy to prove that  m  is a correct bank assignment (the proof is similar to one presented in
section 3 and is omitted). The traverse orders proposed for stages is
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Theorem 4. For FFT sampled at 1−⋅= nRrN  points, where  r  is even, if pipeline length  p  is
odd, the single-port self-sorting FFT processor with pipeline delays postponing writes for
2R � p � 1  clocks with bank assignment  (20) and traverse order cT  (21) has no memory conflicts.

Fig. 6. Butterfly batches merging scheme

(21)
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7.  RESULTS

In this paper we generalized Johnson�s approach [1] and considered not only conflict-free
bank assignment, but also butterfly traverse order within a stage. We proposed a new parameterized
conflict-free  bank assignment generalizing the previous results on relatively prime mixed radix
[2] and multiple butterflies per clock [3].

Using these results we considered four new FFT architecture modifications supporting run-
time change of transform length (up to implementation-dependent maximum length) and direction.
Correctness of used address assignments is proven. For architecture of a FFT processor with dual-
port memories (section 3) High Level Synthesizable (HLS) SystemC model was created. The RTL
obtained has reasonable area characteristics compared to commercially available cores, proving
that the architecture can be effectively used to create actual designs. The results of gate-level
synthesis show that the AGU utilizes negligible size and power compared to RAM and PU. For
other architectures only reference models were developed.

For traditional dual-port memory architecture we considered modification for running multiple
butterflies per clock for radixes other than 2/4. It substantially improves architecture performance
if small and big radixes have large difference.

We also considered mix-radix self-sorting architecture. At the cost of  radix  pipeline stages in
the butterfly processing unit it allows simpler integration with other computations as part of
reconfigurable DSP and allows using of overlapped I/O as stand-alone block improving the initiation
interval up to 30%.

We considered single-port memory in-place architectures. The basic single-port architecture
allows using in-place strategy for libraries without dual-port memories, effectively reducing memory
area by 50% with modest requirement of odd pipeline length of butterfly processing unit. We also
considered the hybrid architecture combining both self-sorting and single-port memory. It provides

benefits of both approaches at the cost of ( 12 −⋅ radix ) pipeline stages.

8. SUMMARY

The architecture under consideration is one of the common architectures for computing long
FFT. The novel algorithms are of practical interest as they increase possible design space by
providing new area/performance trade-offs for practically useful scenarios like latest OFDM-based
protocols for ground cable networks and 4G wireless.

The approach can be applied to building architectures for non- n2  lengths if it is of practical
interest. The algorithms aren�t unique and are defined up to transposition of some digits.

Only one of the developed architectures was implemented in RTL, so the practical
implementation for other architectures is still required. There is a possibility that synthesis will
imply some modifications in algorithms to make them more hardware-friendly.
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APPENDIX

Theorem 1. If  the bank assignment used with trivial traverse order

Rmodqkkkkm
n

i in 


 −= ∑ −
=− 0

1

101 )...,,( , (24)

])...,,,,,...,,[)...,,,,,...,,(( 011121011121 kkkkkkkkkkkkT ccccnccccnc −+++−−+++− = . (25)

It guarantees no conflicts for dual-port FFT processor. See section 3 for the processor�s description.

Proof: For radix R stage numbered c conflicts can only occur between wings of one butterfly. Suppose

a conflict occurred on wings cc kk , , i. e.

)...,,,,...,,()...,,,,...,,( 01110111 kkkkkmkkkkkm cccncccn −+−−+− = . (26)

From definition of  m  it means )( Rmodkk cc ≡ , which  leads to cc kk = , since cc kk , < R. So conflicts

in radix R stages are impossible. It can be shown in the same manner that in radix  r  stage there are no
conflicts within one butterfly.

Suppose 2 butterflies in the same butterfly group in radix  r  stage have a conflict, i. e.

),
~

,...,,(),
~

,...,,( 0112101121 kkqkkkmkkqkkkm nn +⋅=+⋅ −− , (27)

where 11,kk < q. From definition of  m  it means )(0101 Rmodqkkqkk ⋅+≡⋅+ . Since 00,kk < r, it leads to

11 kk = , 00 kk = , therefore, conflict is impossible. n

Theorem 2. If the bank assignment and traverse order are used

Rmodqkkkkm
n

i in 


 += ∑ −
=− 0

1

001 )...,,( , (28)

=−−−−−−−−−+− ),,...,,],,[],,[...,,,0,...,,( 011211111 kkkkkkkkkkkT cncncncncnccnc

2],,,,,],,[],,[...,,,...,,[ 112110111 −<= −−−−−−−−−−+− nckkkkkkkkkkkk cncncncncncnccn , (29)

],,,,...,,,[)],,[],,[...,,,0,( 121023101122312 kkkkkkkkkkkkkkT nnnnn −−−−− = , (30)

],,...,,[),,...,,,0( 012201221 kkkkkkkkT nnn −−− = . (31)

It guarantees no memory conflicts for self-sorting FFT processor. See section 4 for the processor�s
description.

Proof:  cT  is a transposition of digits in butterfly number, therefore it can be used as a traverse order.

Parts of every digit ],[ iii kkk =  are permuted with symmetric parts of digits ink −  and 1−−ink , which

results in digit reverse for k considered as a number constructed of digits [ ii kk , ]. Since original decomposition

reversed digits ik  and butterfly outputs transposition restores order of  [ ii kk , ], it grants that input and output
have the same digit order.

With this approach stages performing reverses are not in-place, therefore it must be ensured that during
the stage computation a memory location is written only after it is read by a butterfly. For each stage  performing
reverse the correct order of read/write operations is guaranteed by reordering butterflies within the stage so

that all butterflies with coinciding values of 021111 ...,,,,,...,,...,, kkkkkkk cncncnccn −−−−−−+−  are executed

sequentially in one batch and adding pipeline delays postponing write operations for  R � p  clocks, where  p
is pipeline length. Since write operations of butterflies from one batch can only corrupt values read in the
same batch and the butterfly loop is pipelined, these measures are enough to grant correct read/write order.

The bank and address assignments used are the same as in section 3. Since in terms of addressing only
the butterfly traverse order is modified, there are no memory conflicts (see Theorem 1). n
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Theorem 3. If the design�s pipeline length is odd and the bank assignment is used with traversal orders

Rmodmodkkkkm
n

i in 2)2(2)...,,( 0
1

001 


 −= ∑ −
=− , (32)

]),...,,[),,...,,( 11
1
22111210 RmodrkkkkkkkkkT

n

i inn ⋅++= ∑ −
=−− , (33)

),...,,,,...,,[),...,,,,...,,( 011121011121 kkkkkkkkkkkkT ccccnccccnc −+++−−+++− = , 0≠c . (34)

It guarantees no memory conflicts for single-port FFT processor. See section 5 for the processor�s
description.

Proof: For radix  R  stage numbered  memory conflicts can occur between read operations of different
wings of one butterfly, write operations of different wings of one butterfly, or write operation of a butterfly

and read operation of some subsequent butterfly. Read/write conflicts within one butterfly on wings cc kk ,
would mean

)2)(2(22)2(22 0
1
,00

1
,0

Rmodmodkkkmodkkk c
n

cii ic
n

cii i −+≡−+ ∑∑ −
≠=

−
≠= , (35)

which implies
)( Rmodkk cc ≡ , i. e. cc kk = . (36)

so conflicts within one radix  R  butterfly are impossible.
Since trivial traverse order is used in radix  R  stages and  r  is odd, values of 0k  interleave for subsequent

butterflies. With pipeline having odd length, it guarantees that any 2 butterflies that have read and write
operations within the same clock have different parity of 0k , and therefore use banks with different parity,
therefore there are no conflicts on wings of different butterflies in radix  R  stages. The above reasoning holds
when the butterflies are from different radix  R  stages as well.

For radix r stage consider memory bank assignment for an arbitrary wing of arbitrary butterfly:

∑ −
=− =−+⋅++= 1

2 0011011210 2)22224()),,,...,,(( n

i in RmodmodkkrkkkkkkkkTm

Rmodmodkmodk
kr

k
k

k
n

i i 22)2(2
222

4 01
1

2
1

1
0











++


















+⋅+



+= ∑ −

= . (37)

Points used in butterflies from one group have coinciding values of 121 ,,..., kkkn−  and differ only in

01,kk . Since 11 −≤ qk , 1
22

0 −≤



 rk

 it is enough to consider

22
2

4 01
0

0 modkkr
k

m +⋅+



= . (38)

Since r
k

2
2

4 0 <





, values of 0m  coincide only for coinciding values of 01,kk . Hence there are no

conflicts within one butterfly group.

Values of 1k  interleave for subsequent butterfly groups. With pipeline having odd length, it guarantees

that any 2 butterfly groups that have read and write operations within the same clock have different parity of

1k , therefore use banks with different second bit in radix 2 representation of the bank�s number. Hence there
are no conflicts on wings of butterflies from different butterfly groups in radix r stage. n

Theorem 4. For FFT sampled at 1−⋅= nRrN  points, where  r  is even, if pipeline length  p  is odd, the
single-port self-sorting FFT processor with pipeline delay postponing writes for 2R � p � 1 clocks with the
following bank assignment.

Rmodmodkk
kk

kkkm n
nn

i in )2)(
2

2
2

22)...,,( 10
102

101 −
−−

=− ++









+



+= ∑ . (39)

The following traverse order has no memory conflicts. See section 6 for the processor�s description.
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[





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









































































+








+

−=













+








⋅


































−<≤



 +

+



 +<<








 ⋅+



+


=

=

∑

∑

−
=

−

−−−−−

−
−+−−

−−

−
=−

2
,2,2,

2
,2,

2

,...,,,1

2)(,
2

,,...,,

,,,,[,...,,,1
2

1

])(,...,,[,
2

1
0

)(2,...,,,0

)(

0
1

2

2
1

0
1

0
1

22

10
1

122

11

1011

1
11

121

k
qmodkrmodmod

q

k
k

qmodk
modk

q

k
k

kknc

modkk
q

k
kkk

r

k
rmodk

r

k
rmodkkknc

n

rmodkkkk
n

c

rmodk
r

k
rmodkkkc

kT

n

i i

n

ncncn

cn
mrg

mrg
cncnn

nn

n

i in

c
c

0111 ...,,,...,, kkkkk ccn
c

−+−= , (41)

22
))2(( 0

1
kr

qmodkkmrg +⋅⋅= . (42)

Proof: Notice that write before read conflicts are impossible for in-place stages (numbered 0.. 1
2

1 −



 +n

).

Consider stage numbered 0. The bank assignment for butterfly executed at iteration 11 ...,, kkn−  is:

2)()(2
22

4)),(( 101
1012

20
0

0 modkkrmodk
r

kkk
kkkTm n

nn

i i −
−−

= +++









+



+



+= ∑ . (43)

Since the pipeline length is odd and subsequent butterflies have interleaving values of 21 modk , there

are no read/write conflicts.

Consider bank assignment for stage numbered c, where 



 +<<

2
1

0
n

c :

)2(
2

22))),((( 0
01

1
modk

k
kkkTIm

n

i ic
c

cc +









+= ∑ −

= . (44)

Subsequent butterflies have interleaving values of 20 modk . Since pipeline length is odd, there are no

read/write conflicts in stage c.

Consider bank assignment for stage numbered c, where 1
2

1 −<≤



 +

nc
n

:






+












+




















++= −

−
−

+−=
−−

= ∑∑ r

k
rmodk

r

k
rmodkkkkkTIm cn

mrg
mrg

cn
n

cni i
cn

i ic
c

cc ,,2))),(((
1

1

1

2

2
2

2
2

2 0
11 modk

k

q

k n +






+








⋅

+ − . (45)

Subsequent butterflies have interleaving values of 20 modk , so there are no read/write conflicts. By

replacing 1−−cnk  with 











 −

r

k
rmodk cn

mrg ,  and cnk −  with 



















− r

k
rmodk mrg

cn ,  the traverse order builds

size  2R  butterfly batches covering all values of digits to be swapped by the reverse. Since the first and the

last butterflies originate from different size  R  batches, a pipeline delay of length  2R � p � 1  is enough to
guarantee no write before read conflicts.

(40)
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Consider bank assignment for stage n � 1:

+

















⋅












+



+⋅







+= ∑ −
=

−
−− 21

2
,2

22
4))(,( 0

1
112

2
1

11
k

qmodk
qmodk

q
q

k
kkTkm

n

i i
n

nn

2
2

,2)2(2 0
110 mod

k
qmodkkmodk n 

















+++ − . (46)

Subsequent butterflies have interleaving values of  20 modk , so there are no read/write conflicts. The

above proof of absence of write before read conflicts holds. n

Àííîòàöèÿ

Â ñòàòüå ðàññìàòðèâàåòñÿ ìåòîä ðåàëèçàöèè êîíâåéåðíîãî âû÷èñëåíèÿ ÁÏÔ ïî ñìå-
øàííîìó îñíîâàíèþ íà ìíîãîáàíêîâîé ïàìÿòè ñ äîïîëíèòåëüíûìè îãðàíè÷åíèÿìè. Íà
îñíîâå ðàññìîòðåííîãî ìåòîäà ïðåäëàãàþòñÿ íîâûå àïïàðàòíûå àðõèòåêòóðû âû÷èñëå-
íèÿ ÁÏÔ. Ïàðàëëåëüíîå âû÷èñëåíèå «áàáî÷åê» â ñòàäèÿõ ñ ìåíüøèì îñíîâàíèåì ïî-
çâîëÿåò ñóùåñòâåííî óñêîðèòü âû÷èñëåíèÿ ïî ñìåøàííîìó îñíîâàíèþ. Àðõèòåêòóðà íà
îñíîâå îäíîïîðòîâîé ïàìÿòè ïîçâîëÿåò ðåàëèçîâàòü íåêîïèðóþùóþ ñòðàòåãèþ âû÷èñ-
ëåíèé íà áèáëèîòåêàõ ýëåìåíòîâ áåç ìíîãîïîðòîâîé ïàìÿòè, îáåñïå÷èâàÿ óìåíüøåíèå
èñïîëüçóåìîé ïàìÿòè â 2 ðàçà. Ñàìîóïîðÿäî÷èâàþùàÿ àðõèòåêòóðà ïîçâîëÿåò èñïîëü-
çîâàòü ïåðåêðûâàþùèåñÿ îïåðàöèè çàãðóçêè è âûãðóçêè äàííûõ, îáåñïå÷èâàÿ óìåíü-
øåíèå çàäåðæêè âû÷èñëåíèé äî 30%. Òàêæå ðàññìàòðèâàåòñÿ àðõèòåêòóðà, êîìáèíèðó-
þùàÿ îáà ýòèõ ñâîéñòâà.

Êëþ÷åâûå ñëîâà: êîíâåéåðíîå ÁÏÔ, ÁÏÔ ïî ñìåøàííîìó îñíîâàíèþ, íåêîïèðó-
þùåå ÁÏÔ, ñàìîóïîðÿäî÷èâàþùååñÿ ÁÏÔ.
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