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Abstract
We address the relationship between voltage noise at the input of a threshold compara-

tor and random changes in the timing of the comparator output toggle timing (jitter).

Models that go beyond the näıve linear relationship are presented and shown to match

experiment. They help reconcile predictions with verifiable device performance; more-

over, they allow an approximate measurement of the noise bandwidth without the help

of high-frequency equipment. In the course our investigation, a PC/laptop toolset was

constructed that lets a neophyte study noise via jitter. This toolset can also be used in ed-

ucation to teach the notion that a biased view of a random phenomenon can arise from

triggering on the tails of its distribution.
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1. INTRODUCTION
A very useful technique for measuring noise present on a signal is to evaluate it from the

jitter present in the digital signal generated when that signal is fed to a discriminator [1, 2]. In

the context of an oscilloscope, the conversion of an analog signal to a digital signal marking

the crossing of a threshold is known as a trigger, but this technique can be used during the

characterization of any discriminator. Knowing the slope (e.g. in volts per second) of the signal

near the discriminator threshold, one can naively estimate that the jitter is the noise divided by

the slope, and that constitutes a correct order-of-magnitude estimate.

However, as we will discuss here in detail, the presence of hysteresis changes the propor-

tionality between noise and jitter in a somewhat non-intuitive way, especially when the slope is

small.

We start with a model of voltage changing quasi-linearly with time, V = St , where S is the
slope. In practical terms, that voltage is very often coming from a sinusoidal signal generator

and the slope near zero volts is then S = 2π f
p

2Vrms.

After going through a series of simple cases, we will mathematically analyze the practical

case of a discriminator and increasingly slow signals and compare theory with an example of

experimental measurements. As will be shown, this technique allows one not only to estimate

more correctly the voltage noise, but also predict skewness of the jitter distribution, and esti-

mate, very approximately, the bandwidth of that noise.

Someone wanting to characterize noise in a comparator using this method can use the tools

we have developed for this purpose, which are: script parameters for the oscilloscope used to
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collect the data, that allow to directly display skewness, EXCEL spreadsheets to compare Gaus-

sian models with experimental data, MATLAB that simulates the trigger process, and VISUAL

BASIC scripts that optimize the joining of data about the noise distribution acquired at several

different slopes.

2. PARTICULAR LIMIT CASES
2.1. Limit case of small noise and no hysteresis, and white noise bandwidth is low
Let us write St =αW (t ),α being a very small constant, andwhite noise functionW (t ) is nor-

malized by <W (t )2 >= 1. Solving St =αW (t ) for the crossing time gives tn =αW (t )
/

S. We can
write this because, due to the low noise bandwidth,W (t ) is a constant which only varies from
one threshold crossing to the next. The white noise functionW (t ) having a root mean square of
1, the distribution of times tn where the voltage meets the noisy threshold will have a root mean

square of

∣∣α/
S
∣∣. As shown in figure 1, there is a distinct unique crossing point each time we run

the threshold crossing experiment. As shown by the dashed lines, the threshold can vary, but it

does not change on the time scale of the input voltage change. It is a valid approximation only if

the white noise bandwidth is much less than α
/

S.

Figure 1. Flat threshold case

2.2. Limit case of small noise, no hysteresis, but high frequencies of white noise
The above estimate of jitter is nice and simple, but, if the noise is indeed white noise, it

can never be assumed that the noise remains the same. Even in an arbitrarily small vicinity

of the time origin, the white noise can have an infinity of different values, and therefore an

infinite number of zero crossings. In the absence of hysteresis, each of those zero crossings

contributes a point to the distribution of threshold crossing times. The probability of a crossing

the threshold per unit time is still dependent on the noise-free voltage, St , and the probability
that two consecutive random numbers from the probability distribution W (t ) are either both
smaller than St

/
α or both larger than St

/
α can be estimated from the integral of the probability

distribution L(W ) from St
/
α to infinity, also known as the cumulative distribution function. To

illustrate with an example, let us assume a Gaussian probability distribution L(W ). Under that
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assumption, the probability that one of two consecutive points is smaller than St
/
α while the

other is larger than St
/
α is proportional to a product of error functions:

erfc

(
Stp
2α

)
·erfc

(
− Stp

2α

)
. (1)

The mean square jitter can be estimated by the second moment of this probability density

function, i.e. by calculating:

2α2
∫ +∞
−∞

(
1−erf 2(τ)

)
τ2dτ

S2
∫ +∞
−∞

(
1−erf 2(τ)

)
dτ

. (2)

The primitive of 1−erf 2(τ) is τ−τ erf 2(τ)−2
/p

π erf (τ)e−τ
2 + (2

/
π)1/2erf (21/2τ),

which evaluates to 2(2
/
π)1/2

between −∞ to +∞.
The primitive of 2

(
1−erf 2(τ)

)
τ2
is

2
/

3
(
τ3(1−erf 2(τ))−2

/p
π τ2erf (τ)e−τ

2 −2
/p

π erf (τ)e−τ
2

+(2
/
π)1/2erf (21/2τ)−τe−2τ2/

π+1
/

(8π)1/2 erf (21/2τ)
)

which evaluates to 2
/

3(2(2
/
π)1/2 + 2

/
(8π)1/2) = 5

/
3(2

/
π)1/2

between −∞ to +∞. In this ex-
treme assumption, there are several transitions of the discriminated signal each time the signal

traverses the threshold; the jitter can still be defined as the root mean square of these transition

times, and it is equal to (5
/

6)1/2
∣∣α/

S
∣∣.

Figure 2. High Bandwidth case
A conceptual representation of the situation in this case is shown in figure 2. Note that, at

times near the average crossing time, the frequency of discriminator output transitions per unit

of time is of the order of the white noise bandwidth.

One can wonder how allowing several transitions can make the trigger jitter smaller in pro-

portion to the voltage noise than allowing a single transition. This result actually depends on

the probability distribution of the “white noise”. In the extreme case of a bi-modal distribution
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of noise, one can see the intuitive reason. For any time between the crossing of the threshold

for the first hump of the distribution and the crossing of the threshold for the second hump of

distribution, there is a uniform probability of transition. Therefore, using the well-known re-

sult [3] that the width of a “rectangular box” distribution is the width divided by the square

root of twelve, and that the root mean square of the numbers in the set {−0.5,0.5} is 0.5, jitter is
(1

/
12)1/2

/
0.5 = (1

/
3)1/2

∣∣α/
S
∣∣. In intuitive terms, transitions occur more near the zero-crossing

compared with the vertical noise distribution having values near zero.

2.3. Handling finite hysteresis
A good discriminator will provide enough hysteresis to deal with noise, so that there is just

one transition of each polarity per cycle of the generator. The question then becomes, what is

the cumulative probability as a function of time, Ptrig(t ), that the discriminator fires? For that,
we must consider a two-term differential equation:

dPtrig

d t
= S

α
PDF

(
St

α

)
SP + f0

(
1−Ptrig

)
CDF. (3)

CDF stands for cumulative distribution function, and PDF for probability density function. A fac-

tor SP = (1−Ptrig)
/

CDF is needed to consider the reduction of the available sample population
due to the other term, but from a didactic point of view, it should be discussed only later as a

detail; when the first term dominates, we can write SP = 1.
The first term represents the probability that the voltage change during a d t time interval

causes is crossing over a threshold (hence the PDF, that measures the probability of the thresh-

old being at that level). The second term represents the probability that, at constant voltage, a

random process yields a different noise level, and that this new noise levels lands on a region

that yields a trigger. In the next paragraph we consider the limit case of the first term dominat-

ing, and in the following one, the limit case of the second term dominating.

2.4. Limit case of small noise and finite hysteresis, and white noise bandwidth is low
We identifyW (t ) of the first section with one random number pulled from the noise density

“PDF” above.

We follow the discussion of that section, but instead of looking for Vc = 0, we are looking for
crossing a voltageVc = 1

2Vhyst, the hysteresis voltageVhyst being theminimum amount of voltage

change needed to overcome an opposite state of the comparator. After the threshold comparator

output goes to the high state when the signal at the input of comparator exceeds
1
2Vhyst, it would

have to go below −1
2Vhyst for the threshold comparator output to go to the de-asserted state,

difference being
1
2Vhyst − (−1

2Vhyst) =Vhyst.

We then write the output transition time tT = (Vc −αW (t ))
/

S. The white noise function
W (t ) having a root mean square of 1, the distribution of times tT =Vc

/
S will have a root mean

square of |α/S|. For a large enough hysteresis, and low enough noise and/or large enough slope,
this crossing point is unique. Note that this perturbation theory approach which give us this

very simple result has the underlying assumption that, for small typical time differences,W (t )
does not change. The conceptual representation of figure 1 still applies, the average position

of the threshold (dashed lines) is simply shifted from zero to
1
2Vhyst. Under that assumption

(corresponding to a white noise bandwidth much less than S
/
α), the noise W (t ) is a different

“constant” at each crossing.
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2.5. Limit case of small noise and finite hysteresis, and white noise bandwidth is large
What happens in this case is that the white noise, “riding” on a linearly increasing voltage,

makes a very large number of low-probability attempts at exceeding the comparator’s thresh-

old. Over time, the probability of firing the comparator per unit time is slowly increasing, and

the cumulated probability is also increasing. Once this threshold has been reached, because of

hysteresis, it is very unlikely that the white noise will cause the comparator output to switch

again. The probability of having met the threshold is thus a function Ptrig(t ) of time t , with an
asymptote of 1, and it related to the probability P (t ) of not having met the threshold yet by the
equation

Ptrig(t ) = (1−P (t )).

It turns out it is more convenient to workwith P (t ) thanwith Ptrig(t ), because the probability
P (t ) is satisfying this differential equation:

dP (t )

d t
=− f0P (t )

+∞∫
−tS/α

W (τ)dτ

where the integral runs from τ=−tS
/
α to +∞, and f0 represents the “white noise bandwidth”

(number of independent attempts at crossing the threshold per unit time).

This differential equation can be rewritten by setting P (t ) = exp(L(t )), L(t ) = ln(P (t ))

dL(t )

d t
= S

α

dL(τ)

dτ
=− f0

+∞∫
τ

W (τ)dτ=− f0C (τ) (4)

which ultimately means the logarithm of cumulative jitter distribution L(τ) is, up to a factor
−α f0

/
S, the CDF (cumulative distribution function) of noise C (τ).

To find out the shape of the distribution of noiseW (τ), via its cumulative distribution C (τ),
the following steps should suffice:

a) Measure experimentally the distribution T (t ) of trigger times, by building a histogram of
trigger times of a large quantity of trigger events,

b) Numerically integrate T (backward) to get the cumulative P (t ), note that P (t ) → 1 for
t →−∞,

c) Take the logarithm of this function, call it L(t ),
d) Take the numerical derivative with respect to τ, τ being (S/α)t ,
e) Divide it by the dimension-less −α f0/S, and you obtain C (τ).

While in theory this works, in practice, the statistical errors involved in acquiring a function

from a cumulative histogram cause either inaccuracy in the vertical axis, coarse granularity of

the horizontal axis (time), or both. Taking the logarithmwill give a relatively high importance to

poorly populated regions of the histogram, and taking the numerical derivative is also a process

that tends to increase the local uncertainty in relative terms. The statistical errors overwhelm

the function value to such a point that the shape of the noise might not be recognizable. This is

especially true in terms of the tails of that noise distribution, where statistical errors are worse.

What is interesting is that by changing the slope of the signal, the constant α f0
/

S can be
changed by orders of magnitude. As we will see later, this allows a special technique to “probe”

the tails of theW distribution.

36 © COMPUTER ASSISTED MATHEMATICS.№1, 2019



Inferring Trigger Noise from Trigger Jitter

2.6. Gaussian noise assumption for case of finite noise, large noise bandwidth
For many practical purposes, most experimenters are ready to assume that the noise dis-

tribution is a Gaussian (a.k.a. Normal distribution). Owing to the Central Limit theorem, the

noise distribution is often Gaussian as a good approximation. In any case, for the average ex-

perimentalist or engineer, the assumption of a Gaussian represents a useful approximation —

he or she cares mostly about the standard deviation and not so much about the exact shape.

For the most precise applications, one may use the n-degrees-of-freedom Student distribution
(which becomes Gaussian in the large number-of-degrees-of-freedom limit), or linear combina-

tions thereof— but one should always start with the Normal distribution.

Solving the above equation (4) in the case where W (τ) is Gaussian means the cumulative

distribution function C (τ) is 1+erf(τ/
p

2)
2 = 1

2 erfc(−τ/
p

2).
The primitive of that is of the form:

τ

2
erfc

−τp
2
+ e−τ

2/2

p
2π

.

And up to a coefficient and an additive constant, this is the L(τ) function for the Gaussian
case.

For this Gaussian case, we can then write the cumulative distribution function

P (τ) = exp
(− α f0p

2S
(z erfc(−z)+e−z2

/
p
π)

)
where z = τ

/p
2.

P (τ) is cumulative starting at+∞, the usual “cumulative starting a−∞” is Ptr i g (τ) = 1−P (τ).
Then the probability density function is:

α f0p
2S

erfc(−z)exp

(
− α f0p

2S

(
zerfc(−z)+ e−z2

p
π

))
.

Writing N = α f0p
2S

= 0.7Neff, where Neff is the “effective number of threshold-crossing at-

tempts per tau”, we can then calculate the n-th moment for any value this parameter N :

I (n, N ) =
+∞∫

−∞
xn N

(
1+erf(x)

)
exp

(−N x(1+erf(x))−Ne−x2/p
π
)
d x.

The Cumulative Distribution Function (CDF) and Probability Density Function (PDF) that we

obtain here are similar, but not equivalent, to the Gompertz CDF and PDF. Like the Gompertz,

there exist only very complicated expressions for the moments — and numeric integration is

likely the best way to evaluate these moments. Also, like the Gompertz distribution, the PDF has

a relatively gradual increase followed by an abrupt fall [4]. In the limit of small “a” parameter
of the Gompertz distribution, the shape of the distribution becomes identical to the shape of our

distribution when the slope S tends to zero: the CDFs will share the form 1−exp(−exp(τ)). The
moments Mn of order n of that “extreme” Gompertz distribution have the particularly simple
formMn = (−1)nζ(n) where ζ is the Riemann zeta function.
The mode of threshold time distribution is obtained by taking the derivative and solving for

it to be zero. This occurs at negative τm such that

N = 2p
π
· e−τ

2
m /2(

1+erf(τm
/p

2)
)2 .

Using the approximation [6] for 1+erf(x) = erfc(−x) in terms of exp(−x2),
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1+erf(x)�
e−x2

−x
p
π

.

We find an approximate expression for the mode:

τm �−
√

2W

(
N

2
p
π

)
.

W being the Lambert function [9].

To obtain this result, we have used N = 2
/p

π · e−τ
2
m /2

/(
1+ erf

(
τm

/
2)

)2
� 2eτ

2
m /2 pπτ2

m

/
2

then used the definition of W as the reciprocal of x exp(x).

The moments of the PDF for the Gaussian noise are best calculatable either numerically or

with infinite series. However, it is sufficient to look at the second and third derivatives of the

PDF at its mode to realize two important aspects:

1. As the N parameter is increased, the value of the PDF’s second derivative,

−[
N 3erfc(−τ)3 − (6N 2erfc(−τ)e−τ

2 +4Nτe−τ
2
)
/p

π
]

exp
(−N (erfc(−τ)τ+e−τ

2/p
π)

)
if evaluated at the mode, simplifies to:

−8

(
e−τ

2
m

p
π

)[
2+τmerfc

(−τm
)/(e−τ

2
m

p
π

)]
exp

(
−N

(
τmerfc(−τm)+ e−τ

2
m

p
π

))/
erfc(−τm)3

that we divide by the value of the PDF at the mode to get the “relative second derivative”:

−4
e−2τ2

m

π

[
2+τmerfc(−τm)

/(e−τ
2
m

p
π

)]/
erfc(−τm)2.

In this expression, the content of the square bracket converges to a value near unity, while

the other factors converge to −4τ2
m . The inverse of the square root of the absolute value

of the “relative second derivative” represents the root mean square value for the normal

(a.k.a. Gaussian) distribution that fits the PDF near itsmode. As such, it represents a coarse

estimate of the r.m.s. jitter of the threshold crossing position, and we see that it decreases

as

1

/√
2W

( N

2
p
π

)
.

In fact, in the “extreme Gompertz” limit, the secondmoment is ζ(2) =π2/6 times the value
of the PDF at its maximum (mode) divided by its second derivative there. So, for very large

N , an asymptotic value for the jitter is

1

/√
12

π2 W
( N

2
p
π

)
. (5)

2. If the time distribution were symmetric, then both the skewness and the third derivative

at the peak would be zero. If we calculate this third derivative at the point where the first

derivative is zero, and that this third derivative is not zero there, it strongly suggests that

the third moment (which is called skewness after normalizing it to the cube of the r.m.s.)
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is non-zero. The evaluation of the third derivative at the point where the first derivative

is zero yields a ratio, with a positive denominator, and this numerator:

4+8τ
/(e−τ

2

p
π

)
erfc(−τ)+ (1−τ2)

/(e−τ
2

p
π

)
erfc(−τ)2.

This expression is negative for all values of τ smaller than −0.15405. This means that ex-
cept for an extreme case, the PDF has a negative third derivative and negative skewness—

and indeed, this is what numeric integration confirms. For positive values of τ, we would

have positive skewness, but the hypothesis of (equation 2) has to be abandoned in favor

of those of (equation 1), and indeed the skewness never goes positive.

3. ILLUSTRATION WITH SOME FITTED EXPERIMENTAL DATA
After describing an example of a data taking setup for jitter distribution data, we will de-

scribe a practical method how to piece together the data concerning the noise PDF acquired

using very different frequencies (and therefore very different slopes at the threshold crossing).

We will also measure the root mean square jitter in each frequency/slope/effective number set-

ting, yielding a curve that we will attempt to fit with a model of jitter r.m.s. width originating

from the assumption of a Gaussian noise PDF. The same fitting exercise will be repeated with

the skewness of the distribution as a function of the frequency/slope/effective number setting.

All these fits allow us to estimate roughly the bandwidth of the white noise, to which we will

finally give a physical interpretation.

3.1. Experimental set-up
To take the measurements, as can be seen in figure below, a low-noise dual-output arbitrary-

function generator (Siglent SDG1050) is connected via coaxial cables to the device under test. The

device under test is a differential threshold comparator whose input noise we wish to character-

ize. The signal generators have a phase control for each output, the first output is programmed

with a phase of 0°, while the second output is programmed with a phase of 180°. Using two “T”

coaxial adapters, the two differential signals are also connected to the 1MΩ inputs labelled C3B

and C4B of a LeCroy Wavemaster 820Zi-A. On this oscilloscope, a math function labelled “F1”

computes C3-C4, reconstituting the differential signal present at the input of the device under

test.

The output of the device under test is connected via a 50 Ω coaxial to the 50 Ω input la-

belled C2A of the oscilloscope. The oscilloscope is set to trigger on positive edges on C2A, i.e. on

negative-to-positive transitions of the output of the Device Under Test. The output impedance

of the device under test is also approximately 50 Ω, so that a reflection-free transmission of the

discriminator output is available as a trigger source on the oscilloscope. On this oscilloscope, the

complex Fourier transform is available as a math function labelled “F2”, a parameter labeled

“P2” then evaluates the phase of the “F1” signal at the frequency which was programmed into

the Arbitrary Function Generator. Amath function labelled “F3” then records a hundred-bin his-

togram of “P2”, the phase of the signal. The FFT (Fast Fourier Transform) is used to calculate this

transform, so that the millions of points (up to 10 million) that the oscilloscope has acquired can

quickly yield the phase of the differential signal with excellent precision (better than 0.01
/p

107

radians, or 0.57m°). Knowing the frequency of the sinusoidal output of the Arbitrary function
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generator, the distribution of phase recorded in the “F3” histogram then corresponds to a distri-

bution of trigger times via the equation t.f=angle(°)
/

360◦
.

The oscilloscope has a parameter (labelled P3) that directly computes the root mean square

deviation from the histogram of signal phases, and for high enough statistics in the histogram,

it gives a precise measurement of the second moment of the threshold time distribution. The

oscilloscope does not have a built-in skewness calculation, but the Param script capability makes

it easy to add one (see appendix A).

Since we feed a differential sine wave of a known amplitude
p

2Vrms, the näıve/low noise

bandwidth expectation for root mean square of the time jitter is very simplyα
/

(2π f
p

2Vrms), so
the root mean square of the phase distribution width would naively be a constant: α

/
(
p

2Vrms),
in radians

1
Simply put, any change in the width of the angle distribution when changing the

frequency is a manifestation of non-näıve models.

Figure 3. Setup

3.2. Direct reconstruction of the cumulative noise distribution: a practical methodol-ogy
The measurements taken with a high slope SH describe well the center of the noise distri-

bution. We apply the above steps “a” through “e”, taking as many points as possible during step
“a”. Even if the distribution is measured with a very large number of points, there comes a point
where the left-hand side of the distribution has large statistical errors.

The measurements taken with a smaller slope SL also represent an attempt to evaluateC (τ).
However, for similar statistics, we are obtaining smaller values ofC (τ), corresponding to smaller
values of the dimension-less “τ” variable. A smaller slope means comparatively more “early

trigger opportunities”. When the statistical error associated with the “SH ” evaluation becomes

larger than the statistical error associated with the “SL” evaluation, “SL” becomes the accurate

source of the C (τ) evaluation instead of “SH ”. C (τ) being continuous, we can accomplish a har-
monization of the two evaluations by τ-shifting the distributions until they have the same av-

erage in the region between the mode of one and the mode of the other (mode meaning bin of

maximum population). The detailed algorithm finding the modes and locating the best shift is

shown in figure 7 [Appendix B].

This can be repeated with measurements taken with a yet smaller slope SL2, and then re-

peated with measurements taken with a yet smaller slope SL3, etc. . .

An ideal choice of slopes is a geometric progression, with the ratio between successive

slopes being about 2 to 3, to quickly span many orders of magnitude. An example of a

1
To obtain the value in degrees of angle, multiply by 180◦/π.
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composite-slope evaluation ofC (τ) is shown in figure below, the twelve slopes being in the ratio
{100:200:400:1400:3400:5000:10000:25000:55000:105000:205000:405000} owing to the choice of

frequencies as 100, 200, 400, 1400, 3400, 5000, 10000, 25000, 55000, 105000, 205000, and 405000

Hertz.

On this figure, using a log scale for the vertical axis, a fit ofC (τ)with the cumulative normal
distribution (1+erf(τ)) looks pretty good, however, onemust keep inmind that, on a logarithmic
scale, significant deviations can seem insignificant. In the presence of significant 1

/
f noise [7,

8], we can logically expect tails that deviate from the normal distribution. The vertical axis is

in arbitrary units but could easily be normalized to unity. The horizontal axis is the phase of

the histogram bins used in this reconstruction, in degrees of angle. Considering the systematics

that affect both the channel and trigger of the oscilloscope, some of the distributions have been

shifted in angle to let the curve elements match better. The fit has three free parameters, and its

equation is:

7.9433×104
(
1+erf

(φ−94.43◦

0.088◦
))

.

Of the three parameters of the fit, only the denominator angle of 0.088° has physical meaning

concerning the amount of noise present at the input of the discriminator.

Figure 4. Composite CDF
Noise distribution naturally tend to be polarity symmetric. This method does not provide

equal accuracy for the distribution of positive noise as it does for negative noise. Even after

accumulating millions of points, at the highest frequency, the histogramwe build is barely start-

ing to probe the CDF beyond its central inflexion point. One method would be to assume that

the noise is symmetric. A potentially better solution, if we want to see possible differences be-

tween the two sides of the noise distribution, would be to change the trigger polarity (e.g. set the

oscilloscope trigger to negative edges on C2A, for the experimental setup described above).
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3.3. Visual Basic tool to merge several histograms into one CDF fit file
In appendix D is a program written in VB script that reads several histogram data files and

merges them. A vital information when wanting to assemble these into a common noise CDF is

the frequency (equivalently period, slope, . . . ) at which each histogramwas taken, so the file are

labelled with the frequency, i.e. part of the file name of each histogram file is the frequency.

The important steps are:

1. The arguments of the script are C file names, loop “I” over them until argument count is

C-1:

a) We get the i -th frequency from the file name,
b) We get the i -th histogram from the file contents.

2. Using indices j and k , we sort by increasing frequency both the frequencies and the his-
tograms.

3. We write five “header” rows, comprising 10 columns per histogram:

a) The first row contains groups of 10 cells, each group having, in the first cell, the

frequency in Hz, and in the seventh cell a barycenter formula based on the sum of

the products of 4c) below, and in the tenth cell, a formula calculating the square root

of the second moment using the eighth column of each group of 10 columns,

b) In the second row, the tenth cell in each group of 10 calculates the statistical error

on the second moment calculation,

c) In the third row, the tenth cell in each group of 10 calculates the period (in µs) of the
sine source,

d) In the fourth row, the tenth cell in each group of 10 is set to the 2nd moment calcu-

lated in a),

e) In the fifth row, the tenth cell in each group of 10 is set to a scaled version of the

error in b).

4. We write 100 histogram rows, in each group of 10:

a) First represents the bin position harmonized with the algorithm of appendix B,

b) Second column represents the bin population,

c) Third has a formula multiplying the first and second column for the purpose of cal-

culating the histogram’s barycenter,

d) Fourth column has a formula cumulating the bin population from bottom to top,

e) Fifth column has a formula for the statistical error on the reconstructed noise CDF,

set to zero if there is too much relative error,

f) sixth column has a formula for the reconstructed noise CDF, set to zero if above is

zero,

g) seventh column is left empty,

h) The eighth column has a formula multiplying bin population by the square of the

difference between the bin position and the barycente,

i) The ninth column has a formula multiplying bin population by the square of the

difference between the bin position and the barycenter,

j) The tenth column is left empty.

5. We write two “footer” rows with formulae calculating the skewness and skewness statis-

tical errors.
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3.4. Width of the jitter distribution as a function of the period
During the experiment, whenwe apply several frequencies andmeasure the distributions of

angle, we are varying N = (α f0)
/

2S, which represents “half the effective number of threshold-
crossing attempts per tau”. One simple and effective way to compare the time jitter with predic-

tions of models is to plot the root mean square width φrms =
√

< (φ−<φ>)2 > of the measured
angles as a function of “N”. If the frequency f is way above the noise bandwidth, we should
observe the näıve expectation of a constant φrms, and models will predict shapes for φrms, as a

function of N . The Figure 5 shows a plot of experimentally measured φrms, as a function of the

period in µs. The abscissae (the period in µs) is a variable proportional to N — but the exact

horizontal scale factor is a fit parameter, which depends on both noise α and noise bandwidth

f0. The ordinate contains the other fit parameter, a vertical scale, which is simply proportional

to the size α of the noise.

Figure 5. Angle Widths
The error bars represent just the statistical error on the measurement of the root-mean-

square jitter. This example data illustrates several points. First, we see data cannot be fit by a

constant, as the näıve model would mandate. Then, we can run a 2-parameter fit with the Gaus-

sian noise assumption: this is represented by the orange solid line. One parameter is the width

of the Gaussian, its value being 0.057°. The corresponding divisor in the erf argument of the

cumulative distribution function is 0.08°, not too far off the result of the fit of the direct recon-

struction algorithm result. The other parameter is the number of random number generations

per tau, which reaches ~2000 at the lowest frequency, at a period T of 10000 µs, which means
f0 = Neff

/
T (360◦/0.057◦)� 1.2 GHz. Note that for the lowest frequency (last point) the Lambert-

function based asymptotic formula (5) then predicts 0.0183°, which is approximately this data

point.
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In the above plot, the statistical errors are shown, but there are also systematic errors due

to temperature variations of the Device Under Test.

If we wanted to eliminate sources of errors, we would acquire trigger jitter data immedi-

ately after frequent frequency changes, because this process would average-out the effect of

temperature drifts and other possible environmental influences.

3.5. Skewness of the jitter, skewness of time distribution, as a function of the N pa-rameter
Since time is proportional to angle in each of the measurements, the skewness of the time

distribution can directly be measured from the skewness of the angles.

φskewness =< (φ−<φ>)3 > /
φ3

rms

In the figure below, the skewness for the observed distribution of angles for our device under

test is plotted as a function of the period T . The first observation is that the distributions are
skewed and aremore skewed as the period is increased. This is indeed a prediction of themodels

of Neff independent random attempts at crossing the threshold.

Figure 6. Skewness
The figure 6 also shows the skewness expected from the Gaussian model (solid orange line).

In the limit of extremely long periods, the skewness of our measured trigger time histograms

follows that of our Gaussian-hypothesis PDF, which will converge asymptotically to the same

skewness as the extreme Gompertz distribution, namely
−12ζ(3)

p
6

π3 � −1.14 [4]. This result fol-
lows from the nth moments of the PDF corresponding to an exp(−exp(x))-shaped CDF being (up
to signs) the Riemann zeta functions of n.
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4. A DIDACTIC MATLAB SIMULATION GENERATING AN ANIMATION
With respect to a situation where the bandwidth of the noise can be neglected, the introduc-

tion of noise bandwidth causes two very noticeable and somewhat non-intuitive effects, namely

a narrowing of the jitter distribution, and amore andmore asymmetry of the same distribution.

The transition from and to this regime is described by the differential equation (3), but that

differential equation is difficult to solve analytically.

One possibility would be to solve this differential equation precisely up to numeric errors of

integration techniques. However, that would fail to capture the real underlying randomness.

So, we have developed a small MATLAB program that actually simulates a noise, which re-

mains constant and then changes, at a chosen “noise bandwidth”, as the input voltage changes.

This program actually histograms many instances of this random process, in red.

In parallel, the program also simulates the “second term only” random process, and his-

tograms many instances of that random process, this is shown in blue, the green line showing

the analytic average.

The animation clearly illustrates how the two descriptions becomes equivalent for small

enough slopes (i.e. with enough tries at threshold crossing) even though they are quite different

from one another initially for large slopes, as the first term dominates. A magenta oblique line

intersecting a blue-and-cyan multiply-valued curve by symbolizes the signal trying to exceed a

finite-bandwidth random threshold.

For a didactic point of view, a student can be taught to write the simulation without knowing

that it will result in a histogramwith negative skewness and that this histogramwill also become

narrower than the näıve expectation. They can discover these facts by running the simulation

and watching the animation.

The listing of the simulation is in appendix C. The frequency of random numbers (noise

bandwidth) is reduced by a factor d by copying one random numbers d−1 times. A factor called
“lam_const” can optionally be non-zero. If enabled, this feature permits to partly reconcile the

correct full simulation of equation (3) with the exact solution to equation (4) at the expense

of an arbitrary number of “extra chances to attempt crossing the threshold”. The student can

realize that this solution is not exact, because it can either reconcile the second moment, or the

skewness, but not with the same “lam_const”.

5. OTHER TOOLS
An excel spreadsheet numerically integrates equation (4) for various values of N, and this

tool is ready to turn on Student T distributions, if the data exhibit tails that significantly exceed

the tail of the Normal distribution [5]. Up to 25 values of N are simulated simultaneously, and

the resulting widths and skewness are calculated. This is appended as an attachment to this

article in binary format. Columns B-Z hold the erf calculations, scaled by Neff. Columns AB-AZ

hold the integral of the previous. Coulmns BB-BZ take the exponential. Columns CB-CZ calculate

the PDF. In columns DB-DZ, the PDF is normalized. Cells EB1-EZ1 are where we control the

25 Neff values. Columns FB-FZ hold the sums for the normalization. Columns GB-GZ hold the

PDF-abscissa products. Columns HB-HZ calculate the first moment by summing these products.

Columns IB-IZ calculate PDF by square of distance to mean products. Columns JB-JZ calculate

square root of the second moments from the previous. Columns KB-KL then calculate PDF by

cube of distance to mean products, and finally columns LB-LZ computes the skewness from the

above by summing them.
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6. CONCLUSION
We started by assuming a proportionality between noise and jitter, via the local slope of a

linear signal, and while we found that in certain limit cases this proportionality exists, in other

cases, like in the presence of hysteresis and considering the noise bandwidth, we have found

that the jitter tends to be smaller than could be expected from the noise. Perhaps even more

surprisingly, we found a case where hysteresis is not needed to make a different distribution

arise.

The physical origin of the phenomenon is that when noise bandwidth is large compared

to the time scale of the signal variation, triggering happens with the extreme tails of the noise

distribution. Owing to the central limit theorem, the noise will be approximately Gaussian, and

the integral of the noise inside the tails will be given by the error function. In the tails, that

function is steeper in relative terms than near the inflexion point, and that makes the onset of

probability of transition more abrupt. When this probability reaches a maximum, there is then

a rapid decay in transition probability because the transition has already occurred: this causes

a definite skewness in the probability density function.

While we are able to fit the width and skewness with models, and we have some success

with a strictly Gaussian model of noise, in general a more powerful method is to reconstruct

the noise distribution by merging jitter data acquired with several value of the slope, spread

across various orders of magnitude. One version of this method was shown, which is somewhat

statistically inefficient, but very simple to implement.

Contrasting the theory and methods presented in this article with other methods of evalu-

ating discriminators [10], we note that the concept of influence of tails of the noise distribution

on threshold crossing has been amply studied, simulated, and compared to experiments. How-

ever, the net effect that these tails have on trigger jitter, and how it creates a skewness of the

distribution of threshold crossing times even if the noise is strictly symmetric has not yet been

made familiar to a wide audience. A particularly interesting feature is that it enables estimates

of the noise bandwidth using equipment that is of much lower frequency. Maybe an inexpensive

instrument can be built to display noise bandwidth as a teaching tool and convenient industrial

debug tool. In any case, it is hoped that this article will help researchers be more familiar with

the underlying mathematical causes of these phenomena.

ALGORITHM OF THE HISTOGRAM HARMONIZATION
Appendix A: skewness parameter for Teledyne LeCroy scopes
Function Update ( ) ’VBS code

’ th i s Measure function calculates skewness of a histogram

’ ( experimentaldistr ibution )

numSamples = InResult . Samples ’ th i s i s the number of bins of the histogram

’ s tart with histogram population and f i r s t moment

sum = 0

sumi = 0

scaledData = InResult . DataArray

For i = 0 To numSamples − 1

sum = sum + scaledData ( i )

sumi = sumi + scaledData ( i )* i

Next
’ the average of the d is t r ibut ion i s the f i r s t moment sumi /sum

’ use th i s to center the next moments on the center of gravity

’ of the d is t r ibut ion
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sumi2 = 0

sumi3 = 0

scaledData = InResult . DataArray

For i = 0 To numSamples − 1

sumi2 = sumi2 + scaledData ( i ) * ( i−sumi /sum)* ( i−sumi /sum)
sumi3 = sumi3 + scaledData ( i ) * ( i−sumi /sum)* ( i−sumi /sum)* ( i−sumi /sum)

Next
’ Calculate the skewness as 3rd moment divided 2nd moment to the power 3/2

OutResult . Value = sumi3 /sum / ( sumi2 /sum)^1.5

’ Set measurement resolut ion to 1m, and units to un i t l e ss

OutResult . VerticalResolution = 0.001

OutResult . Vert icalUnits = " "

End Function

Appendix B: Flowchart of the histogram harmonization

Figure 7. Flowchart of the histogram harmonization algorithm
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Appendix C: MATLAB simulation program, producing animation
lam_const =2 .8 / 2 ;

wobj=VideoWriter ( sprint f ( ’myv%.1 f . avi ’ , lam_const ) ) ;

wobj . FrameRate = 10;

open(wobj ) ;

N=5040;

nu=[1 :N] ;

divs=nu( fix (N . / nu)==N. / nu ) ;
granu=0.005;

resu=zeros (300 ,7 ) ;

resu_row=0;

for idiv =[prod ( s ize ( divs ))−3:−1:1]
i f ( idiv ==1)

nfr =20;

else
nfr =5;

end
for frp =[1 : nfr ]

d=divs ( idiv ) ;

simpr=rand (N) ;

exper=sqrt (−2* log ( rand (N) ) ) . * cos (2* pi*rand (N) ) ;
for j = [0 :d−1]

for k=[0 :d−1]
i f ( j >k )

exper (1+[ j : d :N−d+ j ] ,1+ [k :d :N−d+k ] )= exper (1+[k :d :N−d+k ] ,
1+[k :d :N−d+k ] ) ;

end
i f ( j <k )

exper(1+mod( [ j +d :d :N+ j ] ,N) ,1+ [k :d :N−d+k ] )= exper (1+[k :d :N−d+k ] ,
1+[k :d :N−d+k ] ) ;

end
end

end
level=cumsum(0*exper+granu)−8;
cdft=exp ( (−lam_const* sqrt (2)− sqrt ( 0 . 5 ) / d / granu )
*( level / sqrt ( 2 ) . * erfc (− level / sqrt (2 ) ) +exp(− level . * level / 2 ) / sqrt ( pi ) ) ) ;
cdfn=cumprod( double ( simpr>erfc (− level / sqrt ( 2 ) ) * ( lam_const*granu+0.5 /d ) ) ) ;
cdfu=cumprod( double ( exper> level ) ) ;

xvalues=d i f f (cumsum(mean( level ’ ) ) ) ;

plor=−d i f f (sum( cdfu ’ ) ) ;
plot ( xvalues , plor , ’ r ’ ) ;

moyn=sum( xvalues . * plor ) / sum( plor ) ;

stdv=sqrt (sum( ( xvalues−moyn) . * ( xvalues−moyn) . * plor ) / sum( plor ) ) ;
skwn=sum( ( xvalues−moyn) . * ( xvalues−moyn) . * ( xvalues−moyn) . *
plor ) / sum( plor ) / stdv ^3;

xlim([−8 14 ] ) ;
ylim ( [0 50 ] ) ;

hold on ;
plot ( xvalues ,− d i f f (sum( cdfn ’ ) ) , ’ b ’ ) ;
plog=−d i f f (sum( cdft ’ ) ) ;
plot ( xvalues , plog , ’g ’ ) ;

aver=sum( xvalues . * plog ) / sum( plog ) ;

stnd=sqrt (sum( ( xvalues−aver ) . * ( xvalues−aver ) . * plog ) / sum( plog ) ) ;
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skuw=sum( ( xvalues−aver ) . * ( xvalues−aver ) . * ( xvalues−aver ) .
*plog ) / sum( plog ) / stnd ^3;

whe=1+ floor ( rand (1 )*d ) ;

for irp =[whe:d :N−1]
plot ( xvalues ( [ irp , irp ] ) , [ 4 1 . 8 , 43 . 2 ] , ’−b ’ )
plot ( xvalues ( [ irp , irp ] ) , [ 4 0 . 5 , 41 . 8 ] , ’−c ’ )
plot ( xvalues ( [ irp , irp ] ) , [ 4 3 . 2 , 44 . 5 ] , ’−c ’ )

end
plot ( xvalues ( [ irp , irp ] ) , [ 4 8 . 5 , 49 . 5 ] , ’ : k ’ )

plot ([−2.5 2 .5 ] , [ 40 ,45 ] , ’−m’ )
plot ([−7.5 13 .5 ] , [ 41 .8 , 41 .8 ] , ’−b ’ )
plot ([−7.5 13 .5 ] , [ 43 .2 , 43 .2 ] , ’−b ’ )
plot ([−7.5 13 .5 ] , [ 40 .5 , 40 .5 ] , ’−c ’ )
plot ([−7.5 13 .5 ] , [ 44 .5 , 44 .5 ] , ’−c ’ )
hold off

text (5 ,38 , spr int f ( ’ slope=%d (Ntry=%.1 f ) ’ , d ,200 /d ) ) ;

writeVideo (wobj , getframe ( gcf ) ) ;

drawnow;

resu_row=resu_row+1;

resu ( resu_row ,1 )=d ;

resu ( resu_row ,2 )=moyn;

resu ( resu_row ,3 )= stdv ;

resu ( resu_row ,4 )=skwn ;

resu ( resu_row ,5 )= aver ;

resu ( resu_row ,6 )= stnd ;

resu ( resu_row ,7 )=skuw ;

end
end
close (wobj ) ;

Appendix D: listing of script for histogram-joining into excel-ready sheet
set fso=createobject ( " scr ipt ing . f i lesystemobject " )
mypth=fso . getparentfoldername ( wscript . scriptfullname )
N=wscript . arguments . count−1
redim fr (N)

redim frq (N)

redim l ins (N)

redim xval (99)

redim nulin (99)

for i =0 to N
fr ( i )=mid( wscript . arguments ( i ) ,8+ instrrev ( wscript . arguments ( i ) , " t r i g t d i s " ) )
frq ( i )= le f t ( fr ( i ) , instr ( fr ( i ) , "Hz" )−1) i f ( right ( frq ( i ) , 1 )= "k" )
then frq ( i )=1000* le f t ( frq ( i ) , len ( frq ( i ))−1)
frq ( i )= frq ( i )*1

set f=fso . opentextfile ( wscript . arguments ( i ) )
l ins ( i )= spl i t ( f . readall , vbcrlf )
f . close

next
for k=0 to N

for j =k+1 to N
i f ( frq ( j ) < frq (k ) ) then

f f =frq (k )

frq (k)= frq ( j )
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frq ( j )= f f

l ines= l ins (k )

l ins (k)= l ins ( j )

l ins ( j )= l ines

end i f
next

next
’ plan of 10 columns A: bin , B : pop , C : prod , D:cumsum, E : error

’ F : scaledlog G:sum(Prod ) H:2nd , I :3 rd , J : moments

’

’

’ header

’

’

set fo=fso . createtextfile (mypth&" \ MergedHistos . csv " )
for k=0 to N
letb=chr (65+((10*k+1) mod 26))
i f 10*k+1>=26 then le tb=chr ( (10*k+1)\26+64)& letb
le t c =chr (65+((10*k+2) mod 26))
i f 10*k+2>=26 then l e t c =chr ( (10*k+2)\26+64)& le t c
leth=chr (65+((10*k+7) mod 26))
i f 10*k+7>=26 then leth=chr ( (10*k+7)\26+64)& leth
fo .write ( frq (k ) & " , " & "Hz" & " , , , , , =SUM( " & le t c & " : " & le t c & " ) /

sum( " & letb & " : " & letb & " ) , , , =SQRT(SUM( " & leth & " : " & leth & " ) /

SUM( " & letb & " : " & letb & " ) ) / 0 . 9 , " )

next
fo .writeline ( )
for k=0 to N

letb=chr (65+((10*k+1) mod 26))
i f 10*k+1>=26 then le tb=chr ( (10*k+1)\26+64)& letb
l e t j =chr (65+((10*k+9) mod 26))
i f 10*k+9>=26 then l e t j =chr ( (10*k+9)\26+64)& l e t j
fo .write ( " , , , , , , , , , = " & l e t j & " 1/SQRT(SUM( " & letb & " : " & letb & " ) ) , " )

next
fo .writeline ( )
for k=0 to N

leta=chr (65+((10*k ) mod 26))
i f 10*k >=26 then l e ta=chr ( (10*k )\26+64)& le ta

fo .write ( " , , , , , , , , , =1000000 / " & le ta & " 1 , " )

next
fo .writeline ( )
for k=0 to N

l e t j =chr (65+((10*k+9) mod 26))
i f 10*k+9>=26 then l e t j =chr ( (10*k+9)\26+64)& l e t j
fo .write ( " , , , , , , , , , = " & l e t j & " 1 , " )

next
fo .writeline ( )
for k=0 to N

l e t j =chr (65+((10*k+9) mod 26))
i f 10*k+9>=26 then l e t j =chr ( (10*k+9)\26+64)& l e t j
fo .write ( " , , , , , , , , , = " & l e t j & " 2*5 , " )

next fo .writeline ( )
’
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’

’

’ end of header

’

’

for k=0 to N−1
lines0= l ins (k )

l ines1= l ins (k+1)

max0=0

max1=0

for i =5 to 104
to0= spl i t ( l ines0 ( i ) , " , " )
l ines0 ( i−5)=to0 (1)*1
i f (k=0) then

xval ( i−5)=to0 (0)*1
end i f
i f ( l ines0 ( i−5)>= lines0 (max0) ) then max0=i−5
to1= spl i t ( l ines1 ( i ) , " , " )
l ines1 ( i−5)=to1 (1)*1
i f ( l ines1 ( i−5)>= lines1 (max1) ) then max1=i−5

next
scadif log0= lines0

scadif log1= lines1

for i =98 to 0 step −1
scadif log0 ( i )= scadif log0 ( i +1)+ l ines0 ( i )

scadif log1 ( i )= scadif log1 ( i +1)+ l ines1 ( i )

next
integ0=scadif log0

integ1=scadif log1

stats0=scadif log0 (0 )

s ta ts1=scadif log1 (0 )

for i =99 to 0 step −1
scadif log0 ( i )=−log ( scadif log0 ( i ) / scadif log0 (0)+1e−99)* frq (k )
scadif log1 ( i )=−log ( scadif log1 ( i ) / scadif log1 (0)+1e−99)* frq (k+1)

next
’ i f ( frq0 <frq1 ) then

sign=1

’ e l se

’ sign=−1
’ end i f

’ i f ( 1 ) then

tot0=scadif log0 (max0)

tot1=scadif log1 (max1)

bal=tot1−tot0
for mov=1 to 20

balold=bal

tot0= tot0+scadif log0 (max0+sign*mov)

tot1= tot1+scadif log1 (max1−sign*mov)
bal=tot1−tot0
i f ( bal*balold <=0) then

frac=1−abs ( bal ) / abs ( bal−balold )
exit for

end i f
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next
’ end i f

chisq=0

mov=mov−1+frac
for i =max0 to max0+sign*mov step sign

j = i +max1−max0−sign*mov
relerr =( scadif log0 ( i )−scadif log1 ( j ) ) / ( scadif log0 ( i )+ scadif log1 ( j ) )
chisq=chisq+relerr ^2* l ines0 ( i )* l ines1 ( j )* integ0 ( i )* integ1 ( j ) / _

( l ines0 ( i )* integ0 ( i )* integ1 ( j )+ l ines1 ( j )* integ0 ( i )* integ1 ( j )+ l ines0 ( i )

* l ines1 ( j )* integ0 ( i )+ l ines0 ( i )* l ines1 ( j )* integ1 ( j ) )

next
msgbox "peak " & max0 & " in " & frq0 & " ( " & stats0 & " ) " & vbcrlf &
"peak " & max1 & " in " & frq1 & " ( " & stats1 & " } " & vbcrlf & mov & "−−−>"
& mov+(max0−max1)* sign & vbcrlf & " chi ^2: " & chisq
for i =0 to 99

nulin ( i )= nulin ( i )&xval ( i )&" , "

i f ( i <2) then
xval ( i )= xval ( i )−(max1−max0−sign*mov) * ( xval (99)−xval (98 ) )

else
xval ( i )= xval ( i )−(max1−max0−sign*mov) * ( xval (1)−xval ( 0 ) )

end i f
nulin ( i )= nulin ( i )& lines0 ( i )&" , "

le ta=chr (65+((10*k ) mod 26))
i f 10*k>=26 then l e ta=chr ( (10*k)\26+64)& le ta
letb=chr (65+((10*k+1) mod 26))
i f 10*k+1>=26 then le tb=chr ( (10*k+1)\26+64)& letb
letd=chr (65+((10*k+3) mod 26))
i f 10*k+3>=26 then le td=chr ( (10*k+3)\26+64)& letd
le te=chr (65+((10*k+4) mod 26))
i f 10*k+4>=26 then l e te =chr ( (10*k+4)\26+64)& le te
le tg=chr (65+((10*k+6) mod 26))
i f 10*k+6>=26 then l e tg =chr ( (10*k+6)\26+64)& le tg
nulin ( i )= nulin ( i ) & "=" & le ta & i +6 & "* " & letb & i +6 & " , "

’column C

nulin ( i )= nulin ( i ) & "=" & letd & i +7 & "+" & letb & i +6 & " , "

’column D

nulin ( i )= nulin ( i ) & " " "=" & le ta & "$1*(LN( " & letd & i +6 & "+1E−99)−LN( " & letd

& i +7 & "+1E−99))* IF (SQRT( 1 / ( " & letd & i +6 & " +0.000000001)+1/( " & letd & i +6

& "−" & letd & i +7 & " +0.000000001)) >0.080123 ,0 ,SQRT( 1 / ( " & letd & i +6 &

" +0.000000001)+1/( " & letd & i +6 & "−" & letd & i +7 & " +0.000000001)))*4.0123 " " , "

nulin ( i )= nulin ( i ) & " " "=IF ( " & le te & i +6 & " =0 ,0 , (LN( " & letd & i +6 & "+1E−99)−
LN( " & letd & i +7 & "+1E−99))* " & le ta &"$1 ) " " , , "

nulin ( i )= nulin ( i ) & "=" & letb & i +6 & " *( " & le ta & i +6 & "−" & le tg & "$1 )*

( " & le ta & i +6 & "−" & le tg & "$1 ) , "

nulin ( i )= nulin ( i ) & "=" & letb & i +6 & " *( " & le ta & i +6 & "−" & le tg & "$1 )*

( " & le ta & i +6 & "−" & le tg & "$1 ) * ( " & le ta & i +6 & "−" & le tg & "$1 ) , , " next
next
for i =0 to 99
nulin ( i )= nulin ( i )&xval ( i )&" , "

nulin ( i )= nulin ( i )& lines1 ( i )&" , "

le ta=chr (65+((10*k ) mod 26))
i f 10*k>=26 then l e ta=chr ( (10*k)\26+64)& le ta
letb=chr (65+((10*k+1) mod 26))
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i f 10*k+1>=26 then le tb=chr ( (10*k+1)\26+64)& letb
letd=chr (65+((10*k+3) mod 26))
i f 10*k+3>=26 then le td=chr ( (10*k+3)\26+64)& letd
le te=chr (65+((10*k+4) mod 26))
i f 10*k+4>=26 then l e te =chr ( (10*k+4)\26+64)& le te
le tg=chr (65+((10*k+6) mod 26))
i f 10*k+6>=26 then l e tg =chr ( (10*k+6)\26+64)& le tg
nulin ( i )= nulin ( i ) & "=" & le ta & i +6 & "* " & letb & i +6 & " , "

’column C

nulin ( i )= nulin ( i ) & "=" & letd & i +7 & "+" & letb & i +6 & " , "

’column D

nulin ( i )= nulin ( i ) & " " "=" & le ta & "$1*(LN( " & letd & i +6 & "+1E−99)−LN( " & letd

& i +7 & "+1E−99))* IF (SQRT( 1 / ( " & letd & i +6 & " +0.000000001)+1/( " & letd

& i +6 & "−" & letd & i +7 & " +0.000000001)) >0.080123 ,0 ,SQRT( 1 / ( " & letd & i +6 & "

+0.000000001)+1/( " & letd & i +6 & "−" & letd & i +7 & " +0.000000001)))*4.0123 " " , "

nulin ( i )= nulin ( i ) & " " "=IF ( " & le te & i +6 & " =0 ,0 , (LN( " & letd & i +6 & "+1E−99)−
LN( " & letd & i +7 & "+1E−99))* " & le ta &"$1 ) " " , , "

nulin ( i )= nulin ( i ) & "=" & letb & i +6 & " *( " & le ta & i +6 & "−" & le tg & "$1 )*

( " & le ta & i +6 & "−" & le tg & "$1 ) , "

nulin ( i )= nulin ( i ) & "=" & letb & i +6 & " *( " & le ta & i +6 & "−" & le tg & "$1 )*

( " & le ta & i +6 & "−" & le tg & "$1 ) * ( " & le ta & i +6 & "−" & le tg & "$1 ) , , "

next
fo .write ( join ( nulin , vbcrlf ) )
fo .writeline ( )
for k=0 to N
letb=chr (65+((10*k+1) mod 26))
i f 10*k+1>=26 then le tb=chr ( (10*k+1)\26+64)& letb
l e t i =chr (65+((10*k+8) mod 26))
i f 10*k+8>=26 then l e t i =chr ( (10*k+8)\26+64)& l e t i
l e t j =chr (65+((10*k+9) mod 26))
i f 10*k+9>=26 then l e t j =chr ( (10*k+9)\26+64)& l e t j
fo .write ( " , , , , , , , , , =SUM( " & l e t i & " : " & l e t i & " ) /SUM( " & letb & " : " & letb &

" ) / " & l e t j & " 1^3/0.9^3 , " )

next
fo .writeline ( )
for k=0 to N
letb=chr (65+((10*k+1) mod 26))
i f 10*k+1>=26 then le tb=chr ( (10*k+1)\26+64)& letb
fo .write ( " , , , , , , , , , =SQRT(40 /SUM( " & letb & " : " & letb & " ) ) , " )

next
fo . close
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