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Abstract
The extensive subject of elliptic integrals, functions and curves, being at the junction of

analysis, algebra and geometry, has numerous applications in mechanics and physics.

Two approaches to the study of elliptic functions have become classical, namely that of

Jacobi and that of Weierstrass. Two separate chapters were devoted to these two ap-

proaches in the (well-known) course of modern analysis by Whittaker and Watson, with-

out attempting to unite them [1, §§XX, XXII]. Also, two separate chapters are devoted to

these two approaches in the latest version (1.0.22 on March 15, 2019) of the NIST Digital

Library of Mathematical Functions [2, §§22, 23]. An wide-spread inculcation “explained”

that the Weierstrass approach is more suitable for theoretical research, whereas the Ja-

cobi elliptic functions are more common in applications. But, in fact, this dichotomy is

artificial, and studying elliptic functions and curves may (and must) be combined in an

algebraic approach, establishing a canonical “essential” elliptic function which linear frac-

tional “symmetry” transformations acquire the simplest forms. Although such a natural

and fundamental object to be (rightly) called the Galois essential elliptic function, was
introduced only recently (already in our millennium), its use has quickly become fruitful,

not only and not so much for the effective recovery of known results but also for achiev-

ing new calculations that once seemed too cumbersome to pursue. The methodological

significance of this natural algebraic approach, which undoubtedly transcends back to

the (revolutionary) contribution of Galois, is clearly manifested by its application to sev-

eral fundamental problems of classical mechanics with the achievement of non-standard,

capacious and highly efficient solutions.
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1. THE GALOIS ELLIPTIC FUNCTION
Definition 1. For a given parameter α ∈ C\{−2

/
3,2

/
3}, the Galois essential elliptic function Rα

is defined as the solution of the differential equation

y ′2 = 4 y
(
y2 +3αy +1

)
, (1)

with a (double) pole at the origin [3–6].

The essential elliptic functionRα differs from the Weierstrass elliptic function ℘α by an ad-

ditive constant. Evidently, if ℘α is the Weierstrass elliptic function that satisfies the differential

equation

y ′2 = 4
(
y3 − (

3α2 −1
)

y −α(
1−2α2))=

= 4(y −α)
(
y − (α−β)

)(
y − (α−1

/
β)

)
, (2)

β := (3α+d)
/

2, d 2 = 9α2 −4

then

Rα =℘α−α
.
In particular, when α = 0, the essential elliptic function R0 coincides with the Weierstrass

function℘0. One ought to note that the discriminant of either the cubic polynomial, on the right-

hand side of equation (1), or the cubic polynomial on the right-hand side of equation (2), being

the product of the squares of the three pairwise differences of three roots, is d 2 = (
β−1

/
β
)2
, so

it does not vanish since, by assumption, α,±2
/

3.
We may extend the fundamental domain by adding two functions, corresponding to the two

excluded values α=±2
/

3, for which equation (1) degenerates into the equation

y ′2 = 4 y
(
y ±1

)2 ,

and we, thus, regards the functions ctg2
and cth2

as functions corresponding to α = 2
/

3 and
α=−2

/
3, respectively, where

ctg2(x) :=−
(

e2
p−1x +1

e2
p−1x −1

)2
, cth2(x) :=

(
e2x +1

e2x −1

)2
.

Definition 2. The Galois alternative elliptic function Sβ is the vanishing at zero solution of the

differential equation

y ′2 = (
1−βy2)(1− y2/β)

,

which leading Maclaurin series coefficient is 1 [3–6].

Designating the Jacobi elliptic sine function with snβ(·) = sn(·,β), where β is the elliptic mod-
ulus, we have

Sβ(x) =
√
βsnβ

(
x
/√

β
)

,

and the square of an alternative elliptic function coincides with the inverse of an essential ellip-

tic function. Precisely, we have

S 2
β =R−1

−α. (3)

The alternative elliptic function Sβ, as the Jacobi elliptic sine snβ, is an odd function. How-
ever, in contrast to the Jacobi elliptic sine, the alternative elliptic function is invariant under
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the inversion of its elliptic modulus β 7→ 1/β, while is unable to withstand the sign flip β 7→ −β,
which subjects it to an “imaginary” homothetic transformation, that is,

S−β(x) =
p
−1Sβ

(
x
/p

−1
)

.

The pair of degenerate elliptic functions S±1 corresponds to the pair α=±2
/

3, respectively

S−1(x) = tan(x) := e2
p−1x −1

p−1
(
e2

p−1x +1
) , S1(x) = tgh(x) := e2x −1

e2x +1
.

2. A FUNCTIONAL RATIO
Consider two functional ratios, containing three Jacobi elliptic functions, namely,

T±(x,β) := T

(
x,

1−β
1+β ,

√
−β±

√
−1

/
β

)
,

T (x,β,γ) := 2sn(γx,β)
/
γ

cn(γx,β)+dn(γx,β)
.

For a fixed elliptical module β, one of the two ratios T±(x,β) coincides identically (that is, for
all values of its first argument x) with the Galois alternative elliptic function Sβ(x). Of course,
such a coincidence remains true in the degenerate cases, so, in particular, β tending to zero

T±(x,β≈ 0) ≈
√−β tgh(x/

√−β)

sech(x/
√−β)

=
√
β sin

(
x√
β

)
,

reflects the fact that the vanishing of the elliptic module β corresponds to the Jacobi elliptic sine

sn0, which coincides with the trigonometric function sin.
We also have

T+(x,1) = sin(
p−1x)p−1 cos(

p−1x)
= tgh(x) =S1(x),

T−(x,−1) =
p
−1T+

(
x/

p
−1,1

)
= tan(x) =S−1(x).

The said ratios, which disguise the Galois alternative elliptic function, arise upon calculating

integrals of elliptic functions, as discussed earlier this year at the PCA 2019 conference [3].

3. MODULAR POLYNOMIAL SYMMETRIES
The calculation of the roots of the moduar equation of level p is tightly intertwined with

calculating the p-torsion points of a corresponding elliptic curve, and the establishment of such
remarkable relationship must be attributed entirely and solely to Galois [5, 7–9]. Following Ga-

lois, we arrive at a new class of infinite modular polynomial symmetries, corresponding to odd

primes, the first of which corresponds to the odd prime 3, and we state it explicitly here.
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Problem 1. Let γ4 be a given root of

p4(x) := x4 +4αx3 +2 x2 −1
/

3, α ∈C\
{±2

/
3
}

,

and put

p3(x) := x3 + (
1/γ2

4 −4
)

x +2γ4.

Then, for any root ξ of the polynomial p3 and for any root γ, γ4 of the polynomial p4, that is

to say p3(ξ) = p4(γ) = 0, the equality

ξ9
(

p4(1
/
ξ)

p4(ξ)

)2

=−2γ4

(
γ3 p3(1

/
γ)

p3(γ)

)2

holds.

Thus, three values on the left-hand side, corresponding to three roots ξ, and three values of the

right-hand side, corresponding to three roots γ, coincide with one and the same (invariant) value

which, in fact, lies in the field of rational functions of γ4.

Amusingly, preliminary attempt for providing a direct “computer” proof to this (correct)

identity, at the 17th
International Workshop on Computer Algebra [10], as presented in a talk

given by S. Meshveliani (PSI RAS), turned out being erroneous (according to the author of the

proof). Soon thereafter, he sent me a revised statement of his algorithm, based on a skillful im-

plementaation of Gröbner bases techniques, yet without a specific implementable code (and no

subsequent publication ensued). An elementary proof (without resorting to a computer) was

found by an independent researcher Helmut Ruhland [11], with whose permission it was pre-

sented at a joint CMC MSU and CC RAS seminar [8]. The case, corresponding to the second odd

primes 5, is also worthwhile to explicitly present here, as it resonates with solving the quintic,

as discussed at the past PCA 2018 conference [7].

Problem 2. Let γ6 be a given root of

p6(x) := x12 + 62x10

5
−21x8 −60x6 −25x4 −10x2 + 1

5
+

+αx3
(

x8 +4x6 −18x4 − 92x2

5
−7

)
+ α2 x4

(
x6

5
−3x2 −2

)
− α3 x5

5
,

α ∈C\{±8} ,

and put

p5(x) := x5 + (
4+3λ2 −10µ+λα)

x3 −2
(
λ+2λµ+2µα

)
x2+

+(
2λ2 −12µ+5µ2 +λµα)

x +2λµ,

where

λ := γ6 + γ̄6, µ := γ6 γ̄6, γ̄ := (γ2 −1)2

γ(4γ2 +αγ+4)
.

Then, for any root ξ of the polynomial p5 and for any root γ, γ6 , γ̄ of the polynomial p6, that

is to say p5(ξ) = p6(γ) = 0, the equality

ξ25
(

p6(1/ξ)

p6(ξ)

)2
=−2λµ

(
γ5 p5(1/γ)

p5(γ)

)2 (
γ̄5 p5(1/γ̄)

p5(γ̄)

)2
holds.

Provingmodular polynomial symmetries, alongwith carrying out highly-efficient arithmetic

on elliptic curves, is based on the concepts of elliptic and coelliptic polynomials, which were first

announced at the PCA 2014 conference [9], and subsequently rediscussed [5, 7, 8].
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4. APPLICATIONS TO CLASSICAL MECHANICS
Over a century ago, we were (most rightfully) told by Alfred George Greenhill “that we may

take the elliptic functions as defined by pendulum motion” [12]. Yet not before the turn of the

21st
century did we realize that the motion of the simple pendulum (whether oscillatory or

rotary) is indeed entirely and solely representable by the Galois essential elliptic function. It

(faithfully) maps the (physical) time to the “configuration space” of the pendulum, which might

be representable as a (unit) circle in the complex plane. We merely needed to understand that

the essential elliptic function maps the (physical) time “directly” to a (well-defined) position,

which might be expressed as a (single-valued) “exponent” exp(
p−1θ), with θ denoting the

(multivalued) “angle” [6].
1
Francois Lamarche (McGill University) has contributed to “popular-

ize” and spread the essential elliptic function as the general solution to the pendulum motion

problem. The simple pendulum “reappears” in the (so-called) critical motion of “Dzhanibekov’s

flipping wingnut” [13]. Connecting these twomost fundamental problems of classical mechanics

required an identification of an axis of “generalized” symmetry of a rigid body, which coincides

with no axis of inertia whenever the moments of inertia are pairwise distinct. Such as axis,

which turned out being orthogonal to the circular sections of the (so-called) MacCullagh ellip-

soid of inertia, was justifiably named the the Galois axis [14]. Its conception was superseded by a

formula for the “generalized” precession, of a freely moving rigid body, as an elliptic integral of

the third kind, which integrand is a function not only rational in the (three) moments of inertia

but is symmetric,
2
as well. The symbolic expression of such function was guided by Galois [15].

No less naturally, Galois elliptic functions arise in classifying thread equilibria in a linear par-

allel force field, in both attracting and repelling cases [4, 16]. In fact, employing these functions

in calculating of the length of a thread in a linear parallel repelling force field has led to defin-

ing the modified arithmetic-geometric mean (MAGM), which calculation need not necessarily

be “mediated” via the arithmetic-geometric mean (AGM) but might be carried out “directly”, as

discussed at the “Mathematics Stack Exchange” [17].

5. CONCLUSION
We are led to predict that the Galois elliptic functions would gradually (yet inevitably) re-

place all other elliptic functions, commonly associated with a vast range of “naturally” occurring

phenomena, not necessarily confined to classical mechanics. The Jacobi and the Weierstrass el-

liptic functions would then acquire a permanent place in mathematics history textbooks.
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