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Abstract
The method of calculating the probability density distribution for chaotic systems de-

scribed by the equations of classical nonlinear dynamics is proposed. Specific calculations

are performed for the rotator in an external harmonic field. The results of calculation of

probability density distribution in the cross section of the phase space are compared with

the Poincare cross section for the chaotic attractor obtained by numerical solution of the

dynamic equations. It is shown that the corresponding quantum problem for a rotator

in an external harmonic field in the semiclassical limit leads to equations describing the

distribution of probability density in the classical case.
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1. INTRODUCTION

A characteristic feature of the system described by nonlinear equations is the occurrence

of chaos at certain parameters of the system. As noted by G. M. Zaslavsky and R. Z. Sagdeev in

one of the first monographs on this topic [1]: “Since the trajectories of particles in phase space

become in this case extremely complex and confusing, it is useless to monitor each trajectory

separately. Instead, we should consider a set of trajectories that at any time occupy a finite vol-

ume of phase space, and the distribution of particles in it is characterized by some density.”

Calculation the probability density is a standard problem in statistical physics and quantumme-

chanics. It is interest to formulate a method for calculating the probability density distribution

for the simplest systems in which the state described by a strange (chaotic) attractor is realized.

As is known in this case, in the chaotic picture of the phase space appear quite certain features

most clearly manifested in the Poincare cross section. It is interesting to compare the results of

calculating the probability density of such a system with the Poincare cross section, which are

obtained by numerically solving differential equations.

In this paper, without trying to view general case, we consider one of the simplest systems

for which the state described by a strange attractor is realized— a rotator under the influence of
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a harmonic field.Wewill obtain an equation that determines the probability density distribution

of such a system and give the results of numerical calculation. Since it is relatively easy to per-

form quantum mechanical calculation for this system, we will show that in the quasi-classical

limit the equation for the density matrix of the quantum mechanical problem passes into the

equation for the probability density distribution in the classical dynamics problem. This limit

transition allows us to assert that, if we use the probabilistic approach, the chaos in the prob-

lems of classical nonlinear dynamics is predictable to the same extent as the evolution of the

system described by the equations of quantum theory is predictable. The considered problem

is remarkable because it allows to successfully use it for training purposes. On the one hand,

it is simply formulated for a very real physical system and with the use of modern computing

environments simply solved numerically. On the other hand, the study of solutions allows us

to demonstrate such features of nonlinear dynamics problems as the transition from regular

motion to chaotic with adiabatic change of control parameter. Such transitions occur at differ-

ent values of the control parameter at its increase or decrease, which corresponds to hysteresis

phenomena in nonlinear systems [2, 3].

2. PROBLEM STATEMENT. EQUATION OF MOTION

Consider an electric dipole that can make a one-dimensional rotation (Fig. 1). The real such

system is two differently charged balls of the same mass, connected by a nonconducting rod

fixed on a hinge.

Figure 1

The effect of an external harmonic field can be taken into account by placing such a system

between the plates of the capacitor to which the alternating voltage is applied.

We also assume that the rotation is decelerated with the viscous friction force, which is pro-

portional to the angular velocity of rotation. Then the dynamic equation describing the motion

has the form:

I θ̈ = qE0 sinθcos(ωt )−λθ̇,

where I is the moment of inertia of the dipole, q is the absolute value of charge of the balls, E0

and ω is the intensity and frequency of the external field, λ is the coefficient of proportionality

between the moment of friction and the angular velocity. Here and further the point denotes the

derivative of the variable t . To simplify the equation, we perform a large-scale transformation
of the time variable t ′ =ωt , then the equation of motion takes the form:

θ̈+γθ̇ = f sinθcos t , (1)
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where γ = λ

Iω
, f = qE0

Iω2 (for simplicity, next, use the symbol t instead of t ′). Note that this
equation and the corresponding Poincare cross section pattern were considered in the mono-

graph [1], and the formulation of similar quantum mechanical problem in the absence of dis-

sipation is considered in [4], where, in particular, it was noted that “systems with harmonic

dependence on time are not too popular among theorists”. Note that systems with dissipation

also “not too popular” in the study of quantum chaos.

The differential equation of the second order (1) is reduced to an autonomous system of

three differential equations of the 1st order:
θ̇ = p,

ṗ = f sinθcosτ−γp,

τ̇= 1.

(2)

The variables θ, p and τ form a three-dimensional phase space. This is the minimum value of di-
mension for which the trajectory can tend to a chaotic attractor, similar to the Lorentz attractor

(see, for example, [5]). At the same time, depending on the control parameter f , the solution can
be both regular and chaotic. Parameter γ characterizing the dissipation, usually relies small.

However, namely the difference it from zero determines the tendency of the trajectory in phase

space to the attractor.

Unlike the time variable, the variable τ can be considered as periodic with a period of 2π.
Taking into account the periodicity of the variable θ, it is convenient to consider the trajectory

in the phase space as a line “wound” on the torus (Fig. 2).

Figure 2

The cross section of such a torus by a plane is a Poincare cross section, the corresponding

set of points is a fractal. Numerical calculations for the parameters f = 3 and γ= 0.1 [6] give the
fractal dimension approximately equal to 1.7.

2.1. Probabilistic approach

Let us now define a density probability distribution ρ(τ,θ, p) as follows: for a given value τ
the value∆w = ρ(τ,θ, p)∆θ∆p is equal to the probability that the trajectory of the system passes
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in the region
[
θ, θ+∆θ; p, p +∆p

]
and the normalization condition is set:

π∫
−π

dθ

∞∫
−∞

d p ρ(τ,θ, p) = 1, ∀τ. (3)

Note that the density of the probability distribution can be approximately obtained by a numer-

ical experiment. For this purpose, the section plane needs to be broken into cells∆θ∆p , perform
calculations θ(t ) and p(t ) over large enough time and put ρ for each cell is proportional to the
number of points that fell into the cell. It should be noted that in fact the range of values of the

variable p is limited: p ∈ [−pmax, pmax
]
. Indeed, if in the second equation of the system (2) the

effect of the field is replaced by the maximum value f , we obtain the equation: ṗ = f −γp. The
solution of this equation is in explicit form:

p(t ) = p0 exp(−γ(t − t0))+ f

γ

(
1−exp

(−γ(t − t0)
))

,

where p0 = p(t0). It is easy to show that p(t ) increases only when p0 < f
/
γ. From here we can

conclude that

|p| É pmax = f
/
γ. (4)

It is interesting to obtain an equation for the probability density distribution explicitly. Note

that for Hamiltonian systems, that is, in this case at γ = 0, this equation has the form (see, for
example, [7]):

dρ

d t
= [

ρ, H
]+ ∂ρ

∂t
. (5)

Here are square brackets are Poisson brackets, in this case:

[
ρ, H

]= ∂ρ

∂θ

∂H

∂p
− ∂ρ

∂p

∂H

∂θ
,

and Hamiltonian H has the form:

H = p2

2
+ f cos t cosθ.

To generalize equation (5) to the case of a dissipative system, note that this equation is de-

rived from the equation for an arbitrary function u(t ,θ, p):

du

d t
= ∂u

∂θ
θ̇+ ∂u

∂p
ṗ + ∂u

∂t
(6)

and Hamilton’s equations:

θ̇ = ∂H

∂p
, ṗ =−∂H

∂θ
. (7)

Adding the dissipation described by the second term on the left side of equation (1), the second

of Hamilton’s equations (7) can be reduced to the form:

ṗ =−∂H

∂θ
−γp.

Substituting this expression into equation (6), we obtain an equation for an arbitrary function

u(t ,θ, p). As a result, the equation for the function ρ(t ,θ, p) takes the form:
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dρ

d t
= p

∂ρ

∂θ
+ f sinθcos t

∂ρ

∂p
−γp

∂ρ

∂p
+ ∂ρ

∂t
.

We are interested in a solution approaching a chaotic attractor, which corresponds to the

zero value of the total time derivative. The partial time derivative in this case is equivalent to

the derivative of the variable τ. Thus, the equation for the function ρ(t ,θ, p) has the form:

dρ

dτ
= p

∂ρ

∂θ
+ f sinθcos t

∂ρ

∂p
−γp

∂ρ

∂p
= 0. (8)

Equation (8) is a linear first-order partial differential equation. From the theory of differen-

tial equations (see [8]) it follows that with a similar differential equation, which in General can

be written as:

n∑
v=1

fv (x1, x2, ..., xn)
dψ(x1, x2, ..., xn)

d xv
= 0, (9)

are associated systems of ordinary differential equations. These equations have the form:

ẋv (t ) = fv (x1, x2, ..., xn), v = 1,2, ...,n. (10)

Characteristic curves defined by the system of equations (10) are associated with solutions of
equation (9). In particular, ifϕv (t ) is the solution of a system of equations (10), then the function
ψ(x1, x2, ..., xn) if and only if is the integral of equation (9) whenψ

(
ϕ1(t ),ϕ2(t ), ...,ϕn(t )

)= const
for any characteristic curve. It is easy to verify that in the case under consideration the system

of equations that determines the characteristic curves of the equation (8) exactly coincides with

the system of equations (2) that determines the dynamics of the system of interest.

2.2. Fourier series expansion and numerical computation

One of themethods for solving equations of the form (9) is associated with finding character-

istic curves (see [8] for details). In our case it can be implemented as finding functions ρ(t ,θ, p)
in the above numerical experiment. However, this is not the only solution.

First of all, we note that for the unique solution of equation (8) the function ρ(t ,θ, p) must
satisfy some boundary conditions. In our case, according to inequalities (4), such a boundary

condition is:

ρ(t ,θ, pmax ) = ρ(t ,θ,−pmax) = 0, ∀ θ,τ,

The fulfillment of this condition, the normalization conditions, which can be rewritten as:

π∫
−π

dθ

pmax∫
−pmax

d p ρ(τ,θ, p) = 1, ∀τ, (11)

and the requirements of the periodicity on variable θ and τ uniquely identifies the solution.

Since variables θ, p and τ limited, for the solution of the equation (8) it is convenient to
use the decomposition in Fourier series. To make the expansions identical, that is, all variables

would be bounded by an interval [−π,π], let’s perform a scale transformation of the variable p:

p = p ′ pmax

π
.
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As a result, the equation, the boundary condition and the normalization condition take the form

(we omitted the prime on the variable p):

dρ

dτ
+ pmax

π
p
∂ρ

∂θ
+ f

π

pmax
sinθcos t

∂ρ

∂p
−γp

∂ρ

∂p
= 0,

ρ(τ,θ,π) = ρ(τ,θ,−π) = 0, ∀ θ,τ,

π∫
−π

dθ

π∫
−π

d p ρ(τ,θ, p) =π/
pmax , ∀τ.

Decomposition of the function ρ(τ,θ, p) in a Fourier series written in the form:

ρ(τ,θ, p) =
∞∑

k=−∞

∞∑
m=−∞

∞∑
q=−∞

ρk,m,q exp
(
i (kτ+mθ+qp)

)
.

The differential equation is reduced to a matrix equation with an infinite matrix:

Lkmq,k ′m′q ′ρk ′m′q ′ = 0, k,m, q = 0,±1,±2, ...,±∞ , (12)

where repeated indices imply summation. Matrix Lkmq,k ′m′q ′ can be represented as:

L = T + A+F −G , where:
Tkmq,k ′m′q ′ = i kδkk ′δmm′δqq ′ ,

Akmq,k ′m′q ′ = δkk ′δmm′
pmax

π
m

{
(−1)q−q′

q−q ′ , q , q ′,
0, q = q ′,

F = F[t ]F[θ]F[p], F (t )
kk ′ = δk ′,k+1 +δk ′,k−1 ,

F (θ)
mm′ = δm′,m+1 −δm′,m−1, F (p)

qq ′ = δqq ′
f π

4pmax
q,

Gkmq,k ′m′q ′ = δkk ′δmm′γ

{
(−1)q−q′

q−q ′ q ′, q , q ′,
0, q = q ′.

The boundary condition takes the form:

∞∑
q=−∞

(−1)qρkmq = 0, ∀ k,m. (13)

The normalization condition takes the form:

ρk00 = 0, ∀ k , 0, ρ000 = 1

4πpmax
. (14)

In the process of numerical calculation, the indexes are naturally limited to some integers,

so that the matrices become finite-dimensional. Such limitation makes the Poincare cross sec-

tion picture smoother, but in principle, the larger the boundary values of the indices, the more

detailed the structure of the corresponding fractal can be obtained. We also note some features

concerning the numerical implementation. First, the rapid increase in the size of thematrix with

the growth of the boundary values of the indices. If the module of each index is limited to the
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value of N , then the size of the matrix increases in order of magnitude as (2N +1)3 × (2N +1)3
.

Secondly, the number of equations taking into account the boundary conditions and normal-

ization conditions (equations (12–14) is greater than the number of unknown variables, so to

find solutions it is necessary to use a method based on the minimization of some functional, for

example, the least squares method. Third, the numerical solution of the system of equations (2)

shows that the maximum value of the variable p , determined by the ratio (4) in real calculations
is practically not achieved. For example, for the values of the parameters f = 3 and γ= 0.1 one
obtains pmax = 30, while for the real calculations of the system of equations (2) for sufficiently
large time intervals p is limited to the value 4. Based on this, in numerical calculations using
formulas (12–14), it is advisable to use a lower value for the value of pmax.

Figur 3 shows the Poincare cross section pattern corresponding to τ = 0, calculated with
the parameters f = 3 and γ = 0.1 (left figure) and the probability density distribution pattern
calculated using the method proposed above with the same values f , γ and boundary values of
the indices N = 17. In the figures, the horizontal axis corresponds to the angle θ, and the vertical
value p before scaling. As can be seen from the figures, the main features of the Poincare cross
section are preserved in the calculation of the probability density.

(a) (b)

Figure 3

Note that the proposed method of calculation works only for chaotic States, that is, in cases

when the trajectory of classical motion tends to a chaotic attractor at large time. For example,

for the values of parameters f = 2 and γ = 0.1, the system motion becomes regular, so that
the trajectory in the phase space tends to a closed curve, and the corresponding Poincare cross

section contains only two points. At the same time, the calculation by the above method gives

the picture shown in Fig. 4, resembling a picture at f = 3.
This feature is explained by the fact that the probability density distribution pattern is ini-

tially assumed to be periodic on the variables τ and θ. The Poincare cross section calculated in

this case for arbitrary initial data does not have such periodicity.

2.3. Quantum problem and semiclassical limit

In accordance with the theory based on the classical consideration of the motion of the sys-

tem under investigation here, the trajectory of the system in phase space tends to a chaotic at-

tractor, and the Poincare cross section picture is a fractal. However, referring to the real physical
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Figure 4

system, it is easy to understand that, since the phase space of the real system cannot be divided

into arbitrarily small elements, the description using such an object as a fractal is approximate

and adequate only as long as the distance between the points in the Poincare cross section is

greater than the Planck constant ħ. It is interesting to consider the corresponding quantum me-
chanical problem for this model and to make sure that the limit quasi-classical transition leads

to the equations that were considered above.

As already mentioned, systems with dissipation are not Hamiltonian systems. To calculate

the properties of such systems is not enough to consider the Schrödinger equation, it is necessary

to use a more General method— the density matrix method (see, for example, [9]). The state of

the system is determined by the density matrix, the equation for which has the form:

ρ̇ =− i

ħ
[
H ,ρ

]+Γρ. (15)

In this equation ρ — density matrix H — quantum Hamiltonian, Γ — relaxation matrix, the

square brackets denote the commutator. The similarity of the notations for the classical and

quantum cases should not cause confusion, in the quasi-classical limit between them there is an

explicit correspondence.

The Hamiltonian of the system can be obtained from the classical Hamilton operator by

following the usual quantization rules, that is, by replacing: p by the operator
ħ
i

∂

∂θ
. Note that

the eigenfunctions and eigenvalues of the Hamiltonian in the absence of external action ( f = 0)
are easily found:

ψm = 1p
2π

exp(i mθ), Em = ħ2m2

2
, m = 0,±1,±2, ...

Further, we will use these eigenfunctions to decompose the density matrix. In the absence of

relaxation (Γ= 0) the right part of the equation (15) takes the form:

− i

ħ
[
H ,ρ

]
m,m′ =− iħ

2
(m2 −m′2)ρm,m′ − i f cos t

2ħ (ρm+1,m′ +ρm−1,m′ −ρm,m′+1 −ρm,m′−1).

The term in equation (15) describing relaxation can be represented as ([9]):
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(
Γρ

)
mm′ =−(1−δmm′)γmm′ρm,m′ +δmm′

∑
m′′,m

Wm,m′′ρm′′m′′ (16)

Here the first term of the right part describes the relaxation of nondiagonal matrix elements of

the density matrix, and the second one describes the relaxation of diagonal matrix elements.

The parametersWm,n describe the transitions probability from level n to levelm.
The relaxation parameters γm,n ,Wm,n in actual calculations, usually obtained from some

model considerations. To carry out a quasi-classical transition, we make several assumptions

about these parameters. Suppose, firstly, that only the probabilities of transition between neigh-

boring levels are different from zero, and only the transition from a higher level to a lower one

is possible, which corresponds to the low temperature limit. To find a match between the classi-

cal and quantum parameters, consider the change of the energy of the system in the absence of

external influence ( f = 0). In the classical case, taking into account the equations of motion, we
obtain:

dE

d t
= d

d t

(
p2

2

)
=−γp2.

In the quantum case:

dE

d t
=Wm,m+1(Em −Em+1) =−Wm,m+1ħ2m (17)

Since the classical momentum p corresponds to the value ħm, to match the quantum relaxation
to the classical force of viscous friction is enough to put:

Wm,m+1 = γm. (18)

As a result, from the expression (16) we obtain:

(
Γρ

)
mm′ =−(1−δmm′)γmm′ρm,m′ +δmm′γ

(
(m +1)ρm+1,m+1 −mρm,m

)
.

As a second assumption, we assume that the relaxation of nondiagonal matrix elements is de-

scribed similarly to the relaxation of diagonal elements, that is, we assume that for diagonal and

nondiagonal matrix elements, the action of the relaxation matrix can be written as:

(
Γρ

)
mm′ = γ

((
m +m′

2
+1

)
ρm+1,m′+1 − m +m′

2
ρm,m′

)
.

As a result of these assumptions, the equation (15) for the density matrix takes the form:

ρ̇m,m′ =− iħ
2

(
m2 −m′2)− i f cos t

2ħ
(
ρm+1,m′ +ρm−1,m′ −ρm,m′+1 −ρm,m′−1

)+
+γ

((
m +m′

2
+1

)
ρm+1,m′+1 − m +m′

2
ρm,m′

)
.

The quasi-classical limit corresponds to large values of quantum numbersm. For the transition
to the quasi-classical limit, it is advisable to use theWigner representation for the densitymatrix,

which allows a convenient transition to the classical limit (see, for example, [10]). Define the

variables:

P = m +m′

2
, Q = m −m′,
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and we will denote the density matrix in this representation as ρ(P,Q). The equation for the
density matrix takes the form:

ρ̇(P,Q) =−iħPQ−

− i f cost

2ħ
(
ρ
(
P +1

/
2, Q +1

)+ρ(
P −1

/
2,Q −1

)−ρ(
P +1

/
2,Q −1

)−ρ(
P −1

/
2,Q +1

))+
+γ(

(P +1)ρ(P +1,Q)−Pρ(P,Q
)
.

The quasi-classical limit corresponds to large values of the variable P , but the variableQ can be
small (of the order of one). Given the large values of P , we can proceed to the derivatives based
on the formula:

ρ(P +1,Q) ≈ ρ(P,Q)+ ∂ρ(P,Q)

∂P
.

Considering also that

ρ(P,Q) << P
∂ρ(P,Q)

∂P
,

we obtain the equation for the density matrix:

ρ̇(P,Q) =−iħPQρ(P,Q)− i f cos t

2ħ
(
∂ρ(P,Q +1)

∂P
− ∂ρ(P,Q −1)

∂P

)
+γP

∂ρ(P,Q)

∂P
. (19)

The transition to the classical equation is carried out using the Fourier transform (see [10]):

ρ(P, θ) = 1

2π

∫
ρ(P,Q)exp(iQ θ)dθ.

Applying the inverse Fourier transform, it is easy to obtain the equation for ρ(P,θ):

ρ̇(P, θ) =−ħP
∂ρ(P,θ)

∂θ
− f cos t sinθ

ħ
∂ρ(P, θ)

∂P
+γP

∂ρ(P, θ)

∂P
. (20)

For the final transition from equation (20) to equation (8), it is sufficient to associate the variable

P corresponding to quantum numbers with the macroscopic variable p:

p =ħP.

The equivalence of the classical equation (8) for the distribution of the probability density of

states and the quantum mechanical equation (15) for the density matrix suggests that, if based

on the probabilistic approach, the “predictability” of the classical equation (8) is the same as in

the case of the quantum mechanical problem. We can calculate with the same degree of con-

fidence the probability that the state of the system lies in a certain region of the phase space

during chaotic motion. The characteristic features of classical chaos are the loss of determinism,

that is, the impossibility of predicting the state of the system through the time interval of the

order λ−1
, where λ is the maximal Lyapunov exponent, as well as fractals formed in Poincare

cross section. However, in the quantum problem, both the determinism of the trajectory of mo-

tion and fractals are principal absent. There is a natural question — whether the concept of

chaos, at least for the considered problem, is connected with the fact that we are trying to ap-

ply the classical description, which is essentially approximate, to describe the movement of the

system? Note that unlike dynamic equations (2), the equation for the probability density dis-

tribution (8) is linear. We also note that the concept of “quantum chaos” is usually associated
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(see, for example, [4, 11]) with features in the spectra of systems in the transition to the quasi-

classical limit. The question of whether there are such features in the spectra of the problem

under consideration requires further investigation.

In conclusion, we note that in this problem the equation (8) for the probability density dis-

tribution was derived from the Hamilton equations for the mechanical system. However, the

connection of the first-order partial differential equation with the system of differential equa-

tions for characteristic curves allows, at least formally, to derive an equation for the probability

density distribution of any chaotic system described by a system of ordinary differential equa-

tions, for example, for the Lorentz system. The question of whether such an equation will really

describe the probability density distribution for the chaotic state of an arbitrary system also

requires further investigation.
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